
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

3-29-2004

High Level VHDL Modeling of a Low-Power
ASIC for a Tour Guide
Umadevi Kailasam
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Kailasam, Umadevi, "High Level VHDL Modeling of a Low-Power ASIC for a Tour Guide" (2004). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/1103

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

High Level VHDL Modeling of a Low-Power ASIC for a Tour Guide

by

Umadevi Kailasam

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Srinivas Katkoori, Ph.D.
Murali Varanasi, Ph.D.
Sanjukta Bhanja, Ph.D.

Date of Approval:
March 29, 2004

Keywords: Location-aware computing, Behavioral Synthesis, Leakage power, Translators,
NAVIGATOR

c
�

Copyright 2004, Umadevi Kailasam



www.manaraa.com

DEDICATION

To my parents, family, and friends



www.manaraa.com

ACKNOWLEDGEMENTS

I would like to thank Dr. Srinivas Katkoori for providing me the opportunity to be a part

of his research team. His constant encouragement and support provided me the confidence to do

this thesis work efficiently. I would like to thank Dr. MuraliVaranasi and Dr. Sanjukta Bhanja

for being on my committee. I would like to extend my special thanks to Viswanath Sairaman,

Narender Hanchate, and Ranganath Gopalan for helping me whenever I was stuck up with some

problem. I would like to thank my friends in the VCAPP group and outside, for providing me the

encouragement to do this good piece of work.



www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT vi

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Context-Aware Mobile Computing 2
1.3 Location-aware Computing 3
1.4 Design Flow of an ASIC 4
1.5 Power Dissipation is CMOS Circuits 6

1.5.1 Dynamic Power Dissipation 7
1.5.2 Short Circuit Power Dissipation 7
1.5.3 Leakage Power Dissipation 8
1.5.4 Proposed Approach 8
1.5.5 Thesis Organization 10

CHAPTER 2 LOCATION-AWARE MOBILE COMPUTING AND POWER OPTIMIZA-
TION IN ASICS 11

2.1 Location-aware Mobile Computing 11
2.1.1 Personal Shopping Assistant 11
2.1.2 Location-based Agent Assistance 12
2.1.3 comMotion 13
2.1.4 Electronic Tourist Guide 14
2.1.5 CyberGuide 15

2.2 Power Optimization Techniques 17
2.2.1 Dynamic Power Optimization 17

2.2.1.1 Clock Gating 17
2.2.1.2 Precomputation 19
2.2.1.3 Guarded Evaluation 22
2.2.1.4 Retiming 24
2.2.1.5 Multiple Clocking 25

2.2.2 Leakage Power Optimization 27
2.2.2.1 Input Vector Control 27
2.2.2.2 Power Gating 28
2.2.2.3 Transistor Stacking 30

2.3 Summary 32

i



www.manaraa.com

CHAPTER 3 MOBILE INTERACTIVE GUIDE 33
3.1 High Level Modeling of NAVIGATOR 33

3.1.1 GPS Receiver 35
3.1.2 USB Port 35
3.1.3 Flash Memory 35
3.1.4 Audio CODEC 35

3.2 Brief Description of the Flash Memory 35
3.2.1 FAT 16 Drive 38

3.3 Functionality of TOUR NAVIGATOR 39
3.4 NAVIGATOR Design 40
3.5 Design of Memory Module 44
3.6 Tools Used 44

3.6.1 High Level Modeling in VHDL 44
3.6.2 AUDI 45
3.6.3 SIS 46
3.6.4 Silicon Ensemble 48
3.6.5 Cadence Virtuoso Layout Editor 49
3.6.6 Translators 49

3.6.6.1 VHDL to KISS Translator 50
3.6.6.2 BDNET to Verilog Translator 50
3.6.6.3 VHDL to Verilog Translator 50
3.6.6.4 Steps to Generate the Layout 51
3.6.6.5 Functionality of Back-end Tool 51

3.7 Leakage Reduction Using Low-Leakage Standard Cells 54
3.7.1 Leakage-Delay Tradeoff 56
3.7.2 Summary 57

CHAPTER 4 EXPERIMENTAL RESULTS 58
4.1 Design Flow 58

4.1.1 Behavioral Level Simulation Results for the ASIC Design 59
4.1.2 Low-Leakage Standard Cells 60

4.2 Real World Applications 60
4.3 Layouts Generated by Back End Tool 64
4.4 Summary 64

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH 68
5.1 Future Research 68

REFERENCES 69

APPENDICES 71
Appendix A Behavioral VHDL Code of NAVIGATOR 72

ii



www.manaraa.com

LIST OF TABLES

Table 2.1. Comparison of Proposed Approach with Previous Approaches 16

Table 4.1. Leakage Power Savings in Standard Cells 63

Table 4.2. Delay Overhead Due to Sleep Transistor in Standard Cells 63

Table 4.3. Leakage Power Savings in Real World Applications 63

Table 4.4. Area Overhead in Real World Applications 64

iii



www.manaraa.com

LIST OF FIGURES

Figure 1.1. ASIC Design Life Cycle 5

Figure 1.2. Proposed Tour Guide 9

Figure 1.3. Model of Interface between NAVIGATOR and Flash Memory 9

Figure 2.1. Personal Shopping Assistant Service. Reproduced From [1] 12

Figure 2.2. Agent Interaction Diagram. Reproduced From [2] 13

Figure 2.3. Architecture of comMotion Showing the Three Different Modules. Repro-
duced From [3] 14

Figure 2.4. Gated-Clock Architecture 18

Figure 2.5. Original Circuit 20

Figure 2.6. First Precomputation Architecture 20

Figure 2.7. Second Precomputation Architecture 21

Figure 2.8. Circuit without Guard Latches 22

Figure 2.9. Circuit with Guard Latches 23

Figure 2.10. Flip-flop Addition to Circuit 24

Figure 2.11. Repositioning the Flip-flops in a Pipeline 25

Figure 2.12. Original Circuit 25

Figure 2.13. Partitioned Circuit 26

Figure 2.14. Multiple Clocking Scheme 26

Figure 2.15. Modified Latches with Optimum Sleep Values (0 and 1) 28

Figure 2.16. MTCMOS Latch Circuit 29

Figure 2.17. Two Input NAND Gate. Turning “off” M1 and M2 raises �� to Positive
Value Causing the “Stacking Effect” 31

Figure 2.18. LECTOR Technique 32

Figure 3.1. Mobile Interactive Campus Tour Guide 34

iv



www.manaraa.com

Figure 3.2. Overall Block Diagram of the System Design 34

Figure 3.3. Compact Flash Memory Card Block Diagram 36

Figure 3.4. Diagram showing the Pin Interface of NAVIGATOR with Flash Memory Card 40

Figure 3.5. Flowchart with Steps involved in the NAVIGATOR Design 41

Figure 3.6. Signals that Interface between NAVIGATOR and Flash Memory Card 42

Figure 3.7. RT Level Design given by AUDI 45

Figure 3.8. Controller State Machine in AUDI 46

Figure 3.9. Step to Design and Synthesize a Low Power System 52

Figure 3.10. Overall Data Flow Diagram of Synthesis of Design 53

Figure 3.11. Standard Cell with Sleep Transistor 55

Figure 3.12. Leakage Power Vs Transistor Width 56

Figure 3.13. Delay Vs Transistor Width 56

Figure 4.1. Behavior of ASIC when ‘go’ Signal is Asserted 61

Figure 4.2. Serial Audio Data Output when there is a Match 62

Figure 4.3. Generated Layout for IIR Filter 65

Figure 4.4. Generated Layout for DCT Application 66

Figure 4.5. Generated Layout for FFT Application 67

v



www.manaraa.com

HIGH LEVEL VHDL MODELING OF A LOW-POWER ASIC FOR A TOUR GUIDE

Umadevi Kailasam

ABSTRACT

We present the high level (VHDL) modeling and high level synthesis of an ASIC (TOUR

NAVIGATOR) for a portable hand held device - a tour guide. Thetour guide is based on location-

aware mobile computing, which gives the information of the current location to the user. The

TOUR NAVIGATOR designed in this work is interfaced with off-the-shelf components to realise

the tour guide system. The current location is given by an on-board GPS receiver chip. The

TOUR NAVIGATOR is a search and play module which interfaces with the flash memory, GPS

receiver and the audio codec. The functionality of the TOUR NAVIGATOR is to search the flash

memory for audio data corresponding to the current GPS co-ordinate, which is an input to the

TOUR NAVIGATOR. The look-up table containing the GPS coordinates and the corresponding

audio files are loaded into the flash memory, where in each GPS entry in the table is indexed by the

co-ordinates, and an audio file that contains information about the locations is associated with it.

When there is a match, the audio file is streamed to the codec.

The functionality of the interface of the TOUR NAVIGATOR with the memory module is verified

at the RTL using Cadence-NCLaunch. The layout implementation of the TOUR NAVIGATOR is

done using an automatic place and route tool (Silicon Ensemble), which uses standard cells for the

entire design. Leakage power reduction is done by introducing sleep transistors in the standard

cells. The TOUR NAVIGATOR is put into a “sleep” mode when there is no operation of the tour

guide, thus giving significant power savings.

vi



www.manaraa.com

CHAPTER 1

INTRODUCTION

In recent times mobile applications such as hand-held devices, PDA, etc. have gained wide

acceptance allowing the user to move around with computing capability and network resources.

Many devices that are recently developed are conceived withmobile capability as their primary

objective. Performance is the main focus of these applications, where response time is the major

objective. Such is the case with processors which are mainlybuilt for speed and performance. Other

applications such as inexpensive mobile chips that are widely used mainly focus on functionality

rather than performance. The specific function performed bythe device not typically found in

processors or devices based on performance, becomes the need for the user. In the context of

context-aware computing, we develop an application that isfocused on functionality desired by the

user by trading off with performance.

1.1 Motivation

Mobile computing is a rapidly evolving field that gives the user the power and potential to

access any information on the move. Nowadays web browsing iscarried out via mobile devices.

The reduction in the use of applications and computers in a static environment has led to a enormous

change in trend in the domain of mobile computing. Dynamic environment has become a major

area of research to improve the quality of mobile applications that enable users to access any kind

of information from any location. In such an environment, the physical connections between the

host and the network to be connected should be constantly recomputed. Today’s technology and

software progresses must adapt to such a constantly changing behavior of the system.

All the mobile applications are based on the concept of context-aware computing, which is

characterized by the ability of an application to adapt its behavior to the constantly changing envi-

ronmental factors with least control over them. Today’s improvement and advances in technology

1



www.manaraa.com

and software is enabling easier adaptation to the changing user’s requests and environment. The

contextual information that is exploited in such applications are the user’s location, the physical

factors and informations surrounding the user, the user’s current activity and the time of the day.

However there is a constraint on the user’s request to obtaininformation pertaining to the user’s

location and wireless communication.

VLSI design technology has advanced at a high level in the implementation of mobile devices,

with high performance and low power dissipation at an optimal cost. It provides the ability to

integrate mixed, analog and digital signals on a single chip. There is scope for an entire mobile

application to be realized on a single chip. To realize theseapplications, it is important to have a

system to convert a large number of behavioral description of these mobile devices with various

user’s needs and requests, into its physical implementation without much of user intervention in

the middle stages.

Hence the motivation of this work, is to provide the user witha specific functionality that is

based only on his location and to realize the physical implementation of it with no user interven-

tion. The following sections give an overview of the concepts and features used in developing this

application.

1.2 Context-Aware Mobile Computing

Portable computers and wireless communication devices have become a major part of our day-

to-day life enabling people to access their personal information, public resources, and corporate

data at any time in any location. Context-aware computing isa mobile computing paradigm [4]

in which applications can discover and take advantage of contextual information. The contextual

information that is primarily available for designing systems are, entity, location, time, and activity

of the user. These informations enables the applications topredict the present situation and sur-

rounding environment of the user to provide him with more services. Schilit [5] gives definitions

for context-aware applications as follows :

1. � ����� ��� 	�
������ : This is a technique of user-interface where the location ofnearby

objects are emphasized.

2



www.manaraa.com

2. �� ��� ���� ���������
 � ����� ���������: This is a process, where new components are

added by removing the existing components or by altering theconnections between components

due the change in context.

3. � ��������
 ��� ��� ����� ��� �������	: This depends on the context in which they are

issued and produces different results accordingly.

4. � ������ � �� ��� �� �� ������	: These are simple rules which emphasize on how the context-

aware system should adapt to the context.

Chen gives a different perspective on how a mobile application should take advantage of avail-

able context and gives two definitions of context aware computing [4]:

� ���� � ������� �� �� ���		: an application automatically adapts to discovered context, by

changing the application’s behavior.

� �		�� � ������� �� �� ���		: an application presents the new or updated context to an inter-

ested user or makes the context persistent for the user to retrieve later.

Given a context, whether active or passive, it depends on howthe context is used in the ap-

plication. Efficient use of the current available contextual information in applications is still a

challenging problem in developing applications. Active context-aware computing is interesting

and important as it paves way for the design of new mobile devices that require more infrastructure

support. In this work, we focus on designing an application that provides services by sensing the

location (active context) of the user

1.3 Location-aware Computing

The user’s location plays a significant role in implementingsuch portable devices. Location

awareness is an emerging trend in mobile computing. Location is an important context that has to

be updated whenever the user makes a move. This leads to a needfor a reliable position-tracking

system which is a critical component of many context-aware applications.

Location awareness is taken advantage by systems that are aware of where they are located.

There are two types of techniques to obtain location awareness [6], namely,�		�
� ��, and� �
���� �
positioning. Applications using absolute positioning areaware of the actual location: either the co-

ordinates or the building, city, or country of the user. GPS (Global Positioning System), GSM

3



www.manaraa.com

(Global System for Mobile communication together with MPS(Mobile Positioning System) [6] are

some technologies used for absolute positioning. Relativelocation on the other hand, is aware of

what other objects are in close proximity. When using relative positioning in an application, the

objects can be moved around. The system should recognize other objects without depending on

where the device is located.

The location of the user must be deciphered by sensing on whether the user is outdoor or indoor.

The most common choice for outdoor positioning system is theGlobal Positioning System (GPS).

The GPS signal does not work indoor as the signal strength is too low to propagate through the

buildings. It is a challenging problem to build an indoor location sensor that provides fine-grain

information at a high update rate. Few applications such as the Personal Shopping Assistant [1]

developed at the Hewlett-Packard Laboratories, is based onthe Radio Frequency Identification

(RFID) technology which allows the reading of specific labels attached to products and packages

by means of radio signals. The CyberGuide project [7] has built an indoor tracking system based

on infrared (IR).

1.4 Design Flow of an ASIC

The main stages in the design cycle for an ASIC are design entry, functional simulation, physi-

cal layout, test simulation, and design verification beforereleasing the design for fabrication. These

stages are the same irrespective of the technology used in the ASIC design. A CAD system pro-

vides a suite of facilities [8] and steps that are integratedto support all these stages with a proper

combination of automatic and user-controlled processing at each stage. The CAD system has de-

fault options at many stages, which the designer may choose or ignore if necessary at each stage.

The entry format given for a design to the CAD system is compiled to a set of schematics or a pro-

gram in a hardware description language (HDL), to an intermediate design language (IDL) that is

used for simulation and physical placement. The physical placement process comprises of several

steps that leads to a layer-by-layer description of the ASICnetwork.

Power consumption has become an important parameter along with area, speed and testability

in the design of VLSI circuits. Today’s ASIC Designers are facing a common dilemma with the

product specification in one hand that states that the designmust consume the minimum power

4



www.manaraa.com

Figure 1.1. ASIC Design Life Cycle

requirements so as to meet the goals of reliability, cost andenergy efficiency, and the functional

specification on the other hand which implies that the ASICs must integrate more circuitry and

the speed should be faster to implement the desired functionality, that increases the overall power

consumption. A decade ago, when power consumption was not the major constraint ASICs were

designed with more importance to speed and design constraints as large packages, cooling fans and

fins have been capable enough to dissipate the generated heat. The difficulty in providing the neces-

sary cooling due to the increase in chip density and chip sizemay result in significant cost overhead

or limit the system functionality that can be provided. Thismakes the need of a high-throughput,

low-power digital systems very evident. Today’s designers, due to the unavoidable necessity to re-

duce power consumption adopt design methodologies and techniques at different abstraction levels

to reduce power consumption. These abstraction levels are at technology, circuit, logic, architec-

ture and system. Substantial minimization of power consumption requires power-aware decisions

that are made at each level of design abstraction. MOS technology has scaled down to 0.2 micro

minimum feature size that increases the possibility of placing 1 X ��� transistors in an area of 8

5



www.manaraa.com

in x 10 in if a high-density technology is used [9]. For high-performance microprocessor, an in-

crease in the amount of on-chip memory would best utilize theincreased capability of transistors.

The proliferation of personal digital assistants and portable devices has increased the demand of

designing low power ASICs. High performance and low-power consumption has become a major

problem confronted by most portable devices. Energy minimization is one of the most important

metrics in the design of a portable system. The battery capacity plays a major role in the power

consumption of portable systems. It has improved at a very slower rate (a factor of two or four) in

the past 35 years where the computational demands have increased drastically over the same time.

Hence portable systems are highly power-constrained with an effort to increase the battery life and

reduce the battery weight. Another important consideration that should be taken into account in

portable applications is that many computation tasks are real-time such as speech recognition that

always requires the computations at near-peak rates. The conventional way of shutting down the

power is not an appropriate solution for such applications that always require active computations.

The degree of freedom in design that is available in implementing these functions is that as the real

time requirements of these applications are satisfied, there is no effect in increasing the computa-

tional throughput. This fact along with the unlimited number of transistors that can be used, leads

to developing an architectural design that can show significant savings in power dissipation.

1.5 Power Dissipation is CMOS Circuits

The three major sources of power dissipation in CMOS circuits are represented by the following

equation:

� ����� � � �� ���	�
� � � �	� � �� ���� � � ������� (1.1)

� � � ��� �� ���� ����� � � ��� ���� � �������� ���� (1.2)

The first term denotes the switching component of power, which is due to the switching tran-

sient current and the charging and discharging of load capacitances.�� is the loading capacitance,

���� is the clock frequency,��� is the supply voltage, V is the voltage swing that is the same as that

of the supply voltage, and� � is the activity factor that gives the probability that a power consuming

transition occurs. The second term denotes the direct-pathshort circuit current��� which is current

6



www.manaraa.com

that flows from the supply to ground when both the PMOS and the NMOS transistors are simulta-

neously turned ON. The third term denotes the leakage current, ��������, which is due to the reverse

bias leakage between diffusion regions and the substrate, and sub-threshold conduction. The first

term contributes to dynamic power dissipation and the second and third terms contribute to static

power dissipation.

1.5.1 Dynamic Power Dissipation

The switching activity in a CMOS circuit that gives rise to the dynamic component of power

consumption is when the PMOS transistors charge the load capacitance�� to make a transition

from 0 to ��� which is the highest voltage level. On the vice versa, for the��� to 0 transition

at the output, there is no charge that is drawn from the supply, the stored energy in the capacitor

is dissipated in the pull-down NMOS transistor. The power drawn from the supply is given by

�� � ��� ���� if the transitions occur for a clock frequency of���� .
From the equation (1.2), it is seen that power dissipated is proportional to the square of the

supply voltage. Hence the most direct way to reduce power is by reducing the supply voltage. A

reduction in the voltage by a factor of two results in the reduction of power by a factor of four. The

disadvantage in this method is that the circuit delay increases considerably.

1.5.2 Short Circuit Power Dissipation

There is a direct current path between the supply and ground during finite rise and fall times

that exists for a short period of time during switching. Thiscondition arises when both the NMOS

and PMOS devices are simultaneously ON creating a conductive path between the��� and GND.

This current is significant when the input rise or fall time ata gate is greater than the output rise

or fall time. Due to this, the short circuit path will be active for a long time period. To reduce the

short circuit current, it is desirable to make the input riseor fall time equal to the output rise or fall

time. This reduces the short circuit power consumption to beless than 10% of the total dynamic

power of the circuit. The short circuit current can be eliminated by lowering the supply voltage

lower than the sum of the thresholds of the transistors, as both the NMOS and PMOS devices will

not be in the “ON” state for any input values.

7



www.manaraa.com

1.5.3 Leakage Power Dissipation

The leakage current is due to the reverse-bias diode leakageon the drain of the transistor and the

sub-threshold leakage current that flows through the channel of an off device. Consider an inverter

which is given a input ‘1’. This turns on the NMOS transistor giving ‘0’ as output. Though the

PMOS transistor will be turned off, the bulk of PMOS will be at��� and the drain-to-bulk voltage

will be equal to -��� . This leads to a current that is the product of the area of the drain diffusion and

the leakage current density and less dependent on the supplyvoltage. The leakage current due to

diode leakage becomes significant when the system is idle fora long time as this power is dissipated

though there is no switching. The leakage power due to sub-threshold leakage current occurs when

the gate to source voltage is greater than the weak inversionpoint, but below the threshold voltage

� �, there is a carrier diffusion between the source and drain. Hence, an optimal� � is chosen for

low voltage applications that controls the sub-threshold voltage.

1.5.4 Proposed Approach

The proposed approach is the design of a location-aware based tour guide which has the in-

formation about all the locations of a tour plan. The Global Positing System (GPS) is used as

the tracking component to locate the current position of theuser. The system does not depend on

communication with any external server. The device shown infigure 1.2. is built by integrating off-

the-shelf components like, GPS receiver, Flash memory, ASIC, USB interface, and audio CODEC.

The search and play module is implemented as an ASIC which interfaces all these components to

perform the functionality. Depending on the GPS co-ordinates of the current location, the ASIC

searches the audio data corresponding to that location in the Flash memory card to play out the

audio information to the output.

The behavior of the ASIC and the Flash memory is modeled in thehigh level using VHDL

to ensure the correctness of the functionality as shown in figure 1.3.. The data to be accessed

in a similar fashion as in a solid state flash memory that uses FAT16 file system. This design is

synthesized using AUDI (Automatic Design Instantiation) synthesis system which is a behavioral

synthesis system, capable of synthesizing such control intensive applications into the corresponding

RT level design.

8



www.manaraa.com

USB Interface

AUDIO 

START Memory
Flash

ASIC

Codec

Audio
Receiver

GPS

Figure 1.2. Proposed Tour Guide

NAVIGATOR
(VHDL)

FLASH

MEMORY

(VHDL)

DATA IN 

TEXT FORMAT

Figure 1.3. Model of Interface between NAVIGATOR and Flash Memory

9



www.manaraa.com

The validation of this design is done at the RTL using CadenceNCLaunch. A back end tool is

built to convert the RTL synthesized output given by AUDI to the transistor level physical imple-

mentation of the design.

Leakage power for this mobile device is controlled by use of sleep transistors. Introduction of

sleep transistors in the standard cells in the standard celllibrary, that is used to place and route the

design, the leakage power of the entire design is minimized considerably with minimal delay. A

technique to reduce the leakage power by use of sleep transistors in the controller design generated

by AUDI is also proposed.

1.5.5 Thesis Organization

In Chapter 2, the related work area in the area of context-aware computing and logic level power

optimization is discussed. In Chapter 3, the approach to design and implementation of ASIC with

leakage power reduction is presented in detail. In Chapter 4, the experimental results is discussed.

In Chapter 5, the conclusion of thesis with future work is discussed.

10



www.manaraa.com

CHAPTER 2

LOCATION-AWARE MOBILE COMPUTING AND POWER OPTIMIZATION IN ASICS

We present a detailed survey of some of the prior work done in location-aware mobile comput-

ing, logic level and RTL power optimization (Dynamic power and Leakage power) techniques that

have been proposed to reduce power dissipation in the logic level and RTL level. We also present

in detail the novelty of the proposed application in mobile computing in comparison to the existing

applications. The power optimization technique that is chosen to obtain the best power savings for

the proposed application is discussed in the next chapter.

2.1 Location-aware Mobile Computing

Mobile computing has stimulated a radical revolution, changing our day-to-day lives with the

use of popular small hand held devices such as PDAs, Pocket PCs etc, which are embedded with

substantial processing capabilities. Location is a very important context in most of the mobile

applications. In the following section, we describe some ofthe applications that are based on

location-aware computing.

2.1.1 Personal Shopping Assistant

The PSA [1] is a hand-held wireless communication device which the customer owns (provided

by the shopping center) and a centralized server located in the shopping center to which the cus-

tomers can communicate. The server maintains the store and product database, customer profile,

and provides audio and visual output for the customer’s inquiries over a wireless network.

The PSA consists of two components, namely, the PSA unit which is a small and low-cost

device acting as a terminal for communication and the PSA server which is the heart of the PSA

system.

11



www.manaraa.com

RF  CEILING NODES

PSA UNIT PSA UNIT 

Corporate IQ
Other Stores and 

SERVER
ASSISTANT
SHOPPING

USERUSER

Figure 2.1. Personal Shopping Assistant Service. Reproduced From [1]

1. � �� � ���: The PSA is different from the PDA not only in its set of input/output inter-

faces but also in its functionality that is entirely dependent on its server. The PSA relays

information to and from the PSA server. The microprocessor of PSA processes the protocols

that is involved in setting up a virtual circuit with the server, directs messages to the output

devices, perform compression/decompression on audio input/output, tags messages from the

input devices before transmitting to the wireless interface.

2. � �� � ��� �� : The PSA server takes the responsibility to provide the functionality of answering

to the queries placed to the PSA unit. Once the connection is established, the server uses that

identifier to retrieve the customer’s profile from its database and aid in the queries placed by

the customer. The transmitter and receiver form the wireless network subsystem that sends

and receives voice and images to and from the PSA units.

2.1.2 Location-based Agent Assistance

This application approaches location-based computing [2]by communication with four com-

ponents, namely, the User Agent, the Wherehoo server, Provider Agents, and Providers. The User

Agent issues a query consisting of the location, search radius and keywords representing the user’s

interest and interacts with the Provider Agents, the Wherehoo server is a search server that searches

using the location as its primary input and the keywords as its secondary input. Businesses, ser-

12



www.manaraa.com

vices, attractions etc., registered with the Wherehoo server and have internet presence form the

Providers. The Provider Agents are controlled by the Providers and interact with User Agents.

Wherehoo server

A

B

C

A

B

C

Provider Agents Providers

User Agent residing in

the hand-held device

USER

Figure 2.2. Agent Interaction Diagram. Reproduced From [2]

The display device used by the User is a� ���� � computing appliance that is equipped

with GPS receiver. It has a wireless Internet connection. Anagent in the device keeps construct-

ing queries in the background depending on the user’s needs,queries and communicates with the

Wherehoo server. The Provider Agents, depending on the user’s wants, retrieve and filter data

according to the user’s wants. The user’s queries are obtained from the user through form-based

applications on the Palm device. Series of alerts and place listing is used by the agent to interact

with the user. The Wherehoo server is a search engine that returns XML documents taking the

GPS coordinates, search radius, and keywords as input from the user, geographic location of each

Provider’s service and a description of how to process the query of each of the Provider Agents.

The User issues direct queries after selecting the Providerthat matches his interest in the form of

URL’s.

2.1.3 comMotion

comMotion [3] is a location-aware computing environment, which reminds the user of their

duties depending on the user’s current location, providingboth geographical and speech interfaces.

comMotion takes in the GPS coordinates (latitude and longitude) and translates them into positions

13



www.manaraa.com

that are relevant to the user. It has a to-do list for the user depending on the location in the form of

voice and text entries. On obtaining the location from the user, the to-do list is associated with it

which alerts the user that he has items to be performed in the current location.

Receiver
GPS

CDPD
Modem

physical

messages

virtual

location

direct and indirect 

feedback

GPS satellite

   system

main message server

map server info server 

Internet

position query

position info

location

context-related

message USER

Query Engine 

Location  Learning Agent 

Message Engine

Figure 2.3. Architecture of comMotion Showing the Three Different Modules. Reproduced From
[3]

The hardware of comMotion includes a GPS receiver, a portable PC, a CDPD modem, and a

Jabra earphone speaker with a microphone. The client side uses both graphical and speech inter-

face. Speech recognition and text-to-speech synthesis wasdeveloped using AT & T’s Watson SDK

(Software Development Kit). Automatic Speech Recognition(ASR) and Text-to-Speech (TTS)

synthesis system in integrated into the Watson product which uses phoneme-based sub-word anal-

ysis supporting speaker independence and continuous speech. TCP/IP sockets are used on the

client side to communicate to all the different server processes, to provide easy transfer of these

process to the client device with Web-server capabilities.

2.1.4 Electronic Tourist Guide

The GUIDE System [10] developed by the distributed multimedia research group in Lancaster

University, supports navigation and information needs of visitors to the city of Lancaster using

wireless communications, context-awareness, and adaptive hyper-media. It uses a cell based wire-

less communication infrastructure to broadcast positioning information and user’s needs to portable

14



www.manaraa.com

GUIDE units that run a customized web browser. The GUIDE units obtain positioning information

by receiving location messages that are transmitted from strategically positioned base stations.

The GUIDE system is based on distributed and dynamic information model that is sent to

portable hand-held GUIDE units. Considering the end systems to be used in the GUIDE unit

as pen-based tablet PCs and PDAs, the gray-scale transflective version of Fujitsu Teampad was

selected, which is based on Pentium 166 MMX processor. The city contains a number of WaveLAN

cells, which conform to IEEE 802.11 standard and each cell proves a shared bandwidth which is

supported by a GUIDE server. The information model represents the geographic information by

including special navigation point objects that are used inconjunction with the location objects to

determine the best route between a source and a destination.Each GUIDE unit can locally cache

parts of the information model and therefore operate even when the network is disconnected.

2.1.5 CyberGuide

Tourism is the application domain of CyberGuide [7] developed by Georgia Institute of Tech-

nology. The main objective is to know where the tourist is, give information and answer the tourist’s

queries about the location by use of PDAs and pen-based PCs using RF for indoor positioning and

GPS for outdoor positioning.

The system is divided into several independent components so as to make it useful for the

tourists in terms of generic function. Overall the system gives the appearance of a single unit as a

tour guide. Apple MessagePad 100 with Newton 1.3 is used and pen-based PCs running Windows

for Pen Computing 1.0. Let us take a look at the different components of CyberGuide.

1. � �� ��� ��� ��� : This is the map component of the system. This component has knowledge

about the physical surroundings like the location of buildings or routes which the tourists can

access. This system realizes this component by a map of the physical environment visited by

the tourist.

2. � �	��� ���: This is the information component of the system which givesall the information

about the sights that a tourist might encounter during theirvisit such as descriptions of the

building. This is considered as the structural repository of information.

15



www.manaraa.com

3. � �� ������ : This is the positioning component of the system to show the immediate nearby

surroundings on the map and gives answers about these surroundings. This component is

realized by a positioning module that gives exact information about the current location of

the tourist so that navigator can chart the nearby locationsclose to the current location.

4. � �		��� �� : This is the communication component of the system for the tourist to send

and receive information acting like a messenger service. The tourist can communicate with

the central service locate the others. This component is realized using a set of wireless

communication services.

In Table 2.1. we provide the comparison of our proposed work with the applications discussed

in the previous work.

Table 2.1. Comparison of Proposed Approach with Previous Approaches

Application Purpose Context User External Components
Mobility Communication Used

Cyberguide Guidance for Tourist Within Yes PDA and GPS
(Georgia for tourist location Georgia Tech unit

Tech) in labs and and time campus
comMotion Guidance for Tourist Within Yes Portable PC,

for tourist location exhibition GPS receiver,
in exhibition and time DPD modem

Impulse Answer queries User Anywhere Yes Palm with
(MIT lab) to explore location GPS receiver

physical world
Personal Services to Customer Shopping Yes Plessey ARM610 ,
Shopping customer in location center and Sparc 10s
Assistant shopping center
Electronic Guide for Tourist Lancester Yes Fujitsu Teampad

Tour Tourists in location City 7600
Guide Lancester City
Tour Guidance for Tourist Anywhere No Off-the-shelf

Guide pre-stored location components (GPS
Tour plan as receiver,Flash

desired by User memory, Audio
desired by User code and ASIC)

16



www.manaraa.com

2.2 Power Optimization Techniques

Extending the battery lifetime of the batteries used for themobile devices is the major chal-

lenge. Power is a critical and shared system resource. Optimization techniques for obtaining low

power can be applied at many different levels of the design hierarchy. Optimization at the logic

level has been shown to have a very significant impact on the dissipation of power of combinational

logic circuits. In this section, we review some of the power optimization techniques that are applied

at the logic level.

2.2.1 Dynamic Power Optimization

In the following sections we discuss some of the techniques used for dynamic power optimiza-

tion.

2.2.1.1 Clock Gating

In synchronous circuits, selectively stopping the clock inportions of the circuit where there

is no active computation is a very efficient technique to reduce power dissipation. Benini and

De Micheli [11] have proposed this technique to reduce the switching activity of the circuit that

leads to power dissipation during the idle periods. The mainidea behind this work is to detect the

idle period of the circuit from the state diagram. In the caseof Moore machines, the idle period

is identified by detecting the self-loops. In [11], the limitation to Moore finite-state machines

has been removed by proposing a new method. It deals with a very general model of sequential

circuit, the incompletely specified Mealy machine and a novel probabilistic approach, that can

selectively separate and exploit the idle conditions that occur with high probability. This is done

by transforming the Mealy machine into an equivalent Moore machine.

Local clocks that are conditionally enabled are called gated clocks, because a signal from the

environment is used to qualify the global clock signal [11].An edge-triggered flip-flop followed by

a combinational logic with a single clock is assumed in the Figure 2.4.(a). It has been modified with

a gated clock implementation in Figure 2.4.(b) with a new signal called the activation function��
whose sole purpose is to stop the clock when there is no state transition in the finite state machine

and the machine is in an idle state. The block L in Figure 2.4.(b) is used to filter out the glitches

17



www.manaraa.com

OUT

CLK

STATE

IN Logic
Combinational

R
egisters

(a)

Combinational 

Logic

R
egisters

STATE

CLK

OUTIN

GCLK
L &

af

(b)

Figure 2.4. Gated-Clock Architecture

18



www.manaraa.com

on �� to ensure a correct behavior. When the activation function�� becomes high, the finite state

machine is not clocked. The authors have proposed a technique [11] that automatically generates

the activation function in form of a combinational logic block that uses as its inputs the primary

input IN and the state lines STATE of the finite state machine.This technique is strongly dependent

on two factors - how much of state splitting is needed to transform the machine to a locally Moore

machine. It also depends on the self loop conditions, the time for which the finite state machine

will be in the self-loop condition and to generate the activation function that is not minimal. In

this technique [11], by shutting down the local clock in portions of the circuit that are idle reduces

the power consumption as no power is consumed in the finite state machine, combinational logic

and the sequential circuits. The drawback of this techniqueis that the additional circuitry for the

computation of the activation function�� is an overhead and increases the delay if it is in the

critical path of the circuit. And for machines that have a very small number of self loops, the area

of improvement is almost null [11]. The gated-clock technique is very advantageous for circuits

that are idle for a long time and get activated by START signals. To implement this technique,

knowledge of the environment is required in terms of activity so as to indicate if the activation

function should be high or low.

2.2.1.2 Precomputation

This method deals with the problem of reducing the power by optimizing logic-level sequential

circuits. Alidina �� �
 [12] proposed a powerful sequential logic optimization method to reduce

power that is based on selectively precomputing the output logic values of the circuit one clock

cycle before they are required, and using the precomputed values to reduce internal switching

activity in the succeeding clock cycle. The main objective of this technique is to synthesize the

precomputation logic, which predicts the output of a subsetof inputs for the next value. The

original logic circuit can be switched off in the next clock cycle by using a latch if the outputs can

be precomputed using the precomputation logic. The precomputation logic takes as its inputs the

current inputs of the circuit and computes the output value.The important factor in this method

is that the power savings that are achieved by implementing this technique should overcome the

19



www.manaraa.com

power that is dissipated by the additional circuitry that isadded for the precomputation logic to

select the inputs for which the output is precomputed.

f

nx

x2
x1

AR1 R2

Figure 2.5. Original Circuit

Two registers separated by a combinational logic block is given in Figure 2.5.. It is assumed

that block A computes and outputs a Boolean function� . The two predictor functions g1 and g2

predict the output value of the combinational block A for thenext clock cycle as given below:

�� � � �� � �� � �� (2.1)

�� � � �� � �� � � � (2.2)

During the clock cycle t, if g1 evaluates to 1, the input to theregister R2 in the succeeding clock

cycle is a 1 and if g2 evaluates to a 1, then the input to the register R2 in the succeeding clock cycle

is a 0. If either g1 or g2 evaluates to 1, the register R1 is disabled i.e, that in the succeeding clock

cycle the inputs to block A do not change.

� �� �� ��

� �
� �
� �
� �

� �	 
 
 
� � �
g1

g1g2
FF

FF

R2R1

x1
x2

xn

A

f

LE

Figure 2.6. First Precomputation Architecture

20



www.manaraa.com

The authors of [12] has proposed two precomputation architectures. In the first precomputation

architecture seen in Figure 2.6., the predictor function isevaluated by a subset of the inputs which

predicts the output value of the circuit in the next clock cycle. If the output value is predicted then

the inputs to the combinational block A do not change and thisoutput value is used in the next

clock cycle, thus reducing the switching activity in the combinational block A. The main objective

of this method is to use the minimum number of inputs to predict the output in order to avoid

the duplication of the combinational block A and to avoid theincrease in power due to the area

overhead. At the same time, the chances of predicting the output should also be maximized. This

leads to the second precomputation architecture as shown inFigure 2.6.

A R3

R1

f

g1

g2

x1
x2

xn
R2
LE

Figure 2.7. Second Precomputation Architecture

In the second precomputation architecture [12], the inputsto the combinational block have been

split into two sets that correspond to the registers R1 and R2. The combinational block A is fed

continuously by the register R1 with the inputs that are usedto predict the output value for the next

clock cycle. If the predictor logic predicts the output value for the next clock cycle, the Register

R2 is blocked and there is no switching activity among the inputs to the combinational block A.

This reduces some switching activity in the internal nodes of block A.

Precomputation technique aims at reducing the switching activity in the circuit in the con-

secutive clock cycles by predicting the output. This technique increases the circuit area and can

affect the circuit performance resulting in an increased clock period due to the delay caused by

the predictor logic circuit. And moreover this technique isdependent on previous input history.

21



www.manaraa.com

This technique is applicable for circuits that are specific on application with their environment

information known priorly.

2.2.1.3 Guarded Evaluation

Vivek Tiwari �� �
 [13] proposed a method for power optimization in a similar manner as clock

gating and precomputation. The method is an application of power management at the logic level.

The technique determines, the parts of the circuit that perform useful and useless computation and

shuts down the parts of the circuit performing useless computation per clock cycle. Transparent

latches are used with ENABLE signal is used to disable the clock of the components that perform

useless transitions. The ENABLE signal is calculated from asubset of existing input signals that

does not affect the primary output of the module when blocked.

Data Register Data Register

Shifter Adder

MUX c

0 1

Figure 2.8. Circuit without Guard Latches

In Figure 2.8., the ALU performs both shifting and addition operations every clock cycle. The

result of one of these is selected using a multiplexer. The evaluation of both the operations is

unnecessary every clock cycle as the result of only one of theoperations is taken to the output. If

the decision is made as to which of the results of the two operations is needed, the computation

of result by the other component can be avoided leading to significant power savings. In Figure

22



www.manaraa.com

2.9., guards which are transparent latches with an enable input are placed at the inputs of those

parts of the circuits that need to be selectively turned off.If the module has to be active, the enable

signal in the guard allows inputs to propagate through the transparent latches permitting normal

operation. If the module has to be inactive, the transparentlatch retains its previous value and

there is no computation or transition performed in the module. On an abstract level, in a CMOS

circuit, the primary input causes the primary output to change which is the result of switching of a

large number of gates where all the switching activity is unnecessary. For example, in the case of

a two-input AND gate with one of the inputs already set to 0, any switching activity in the other

input does not affect the output. Hence the switching activity on the second input is useless and

can be blocked.

Shifter Adder

MUX c

0 1

Data Register Data Register

L1 L2
Guard Logic

c=0 c=1

Figure 2.9. Circuit with Guard Latches

The author states that their technique is different from precomputation in that the entire circuit

need not be re-synthesised to find out the possibilities as towhen the circuit has to be shut down.

The evaluation of the sub-circuit that is used to shut down the modules is guarded by the existing

input signals of the circuit. In other words the circuit is never clocked OFF. Hence there is no ne-

cessity to resynthesise the circuit. The power optimal inputs to the circuit are obtained by including

a transformation circuitry to the original circuit.

23



www.manaraa.com

2.2.1.4 Retiming

Monteiro �� �
 proposes a technique in [14] to reduce power dissipation in sequential circuits

such as pipelines. A pipelined sequential circuit can be acyclic corresponding to blocks of com-

binational logic that are separated by flipflops. The introduction of a flipflop to a combinational

block reduces the switching activity at the output of the block leading to lower power dissipation.

G
CL

(a)

G R

CL

(b)

Figure 2.10. Flip-flop Addition to Circuit

In Figures 2.10.(a) and 2.10.(b) the power dissipated by thecircuit is given by� � and � � ,

where� � is the average switching activity at the output of the gate G and� � is the load capacitance.

When a flip-flop R is introduced at the output of gate G, the power dissipated by the gate G is given

by � � � �  � �  � � � , where�  is the capacitance at the input of the flip-flop and�  is the

switching activity at the output of the flipflop. The observation here is that�  � � � as the output

of the flipflop makes at most only one transition per clock cycle whereas gate G may make three

transitions for the same. Hence the addition of flip-flops to acircuit decreases power dissipation. In

a similar way, repositioning of a flip-flop in a pipeline according to the amount of spurious activity

at various stages of a pipeline, leads to reduction in power.

The authors propose an algorithm to place a flip-flop at the output of a selected set of nodes

as shown in Figure 2.11.. This leads to reduced switching activity reducing the power dissipation

in a pipelined circuit. The selection of nodes is done based on the amount of glitching activity at

the output of these nodes. A cost function is given by estimating the average switching activity of

the combinational network both with zero delay and actual delay for each gate, thus calculating the

amount of glitching at the output of the nodes and the probability [5] that a transition at each gate

propagates through its transitive fanout. This method reduces the consumption of power without

any loss in performance.

24



www.manaraa.com

P0 P1 P2FF

P0 FFP1 P2

Figure 2.11. Repositioning the Flip-flops in a Pipeline

2.2.1.5 Multiple Clocking

Papachristou�� �
 proposes a technique in [15] to design low-power register-transfer-level

datapaths. A circuit is partitioned into� disjoint modules and each module is assigned a distinct

clock. The technique uses� non-overlapping clocks by dividing the frequency� of a single clock

into � cycles. In this way each module operate only during its duty cycle and power is reduced as

the clocking frequency of each module is� ��. The overall frequency of the circuit remains the

single clock frequency� . This way the modules that are inactive are turned off duringtheir off

duty cycle reducing the power dissipation.

a d c b

x , y , z

e

x , y , z u , v , w

+ − + −

Figure 2.12. Original Circuit

25



www.manaraa.com

The differences in the circuits Figures 2.12. and 2.13. are (1) circuit 1 needs less resources

than circuit 2. (2) The two ALUs in circuit 1 use a single clockand work concurrently. Whereas

in circuit 2, the circuit is partitioned in a way that the firstsub-circuit works during the odd time

steps and the second sub-circuit works during the even time steps. Allocating the nodes at even

and odd time steps partition the circuit into separate sub-circuits that are active at non-overlapping

time intervals, making the use of non-overlapping clocks.

  −  + +

d

e b a

c

x , u   y , v z , w

CLOCK1 CLOCK2 CLOCK3

T1   T3   T5 T2  T4 ..... T1  T3  T5

Figure 2.13. Partitioned Circuit

Figure 2.14. shows the two non-overlapping clocks whose frequency is� ��, where� is the

frequency of the original circuit. Though the separate components of circuit 2 are clocked at half

the frequency of the original frequency, there is no loss in performance as the effective frequency

is the same, reducing the power at the same time.

Single Clock

(freq = f)

Clock 1

(freq = f/2)

(freq = f/2)
Clock 2

Multiple clocking scheme

Figure 2.14. Multiple Clocking Scheme

26



www.manaraa.com

The authors propose an algorithm in [15] for allocation of multiple clocks for power reduction.

The algorithm emphasizes on holding the previous input values for the longest time possible to

reduce the spurious transitions on the input ports of the ALUs. They also propose a method to

decrease the voltage, as the operating frequency of each clock partition is lower than the single

clock frequency to achieve more power reduction. Partitioning the circuit carefully during the RTL

design assures same performance as in the single clock data path.

2.2.2 Leakage Power Optimization

In the following sections we discuss some of the techniques used for leakage power optimiza-

tion.

2.2.2.1 Input Vector Control

This approach is based on circuit-level optimization methods with architectural support that is

applied during run-time to achieve reduction in leakage power. The authors Borkar and De propose

a technique that is based on [16] standby leakage control scheme which simultaneously turns off

more than one transistor in nMOS or pMOS stacks between supply and ground. This is made

effective by giving an input vector that maximizes the number of stacks in the PMOS and NMOS

transistors by switching off more than one transistor. Hence the goal in this method is to find the

input vector pattern that maximizes the number of transistors that can be in the off state in all the

stacks across the design. An exhaustive simulation of all the input vectors is done to find the input

vector that gives the lowest leakage power or to use a probabilistic theory to minimize the number

of trials giving a function with error tolerance and desiredfunctionality.

Implementation of this technique requires minimal architecture support which enables or dis-

ables the unit depending on the sleep signal as shown in figure2.15.. The actual leakage power

savings depend strongly on the unit to which the technique isapplied [16], with the logic design

style and logic depth being the most influential factors. Thesavings are significant in such logic

units as the savings is directly proportional to the controllability of the stacking effect by the input

vectors. All the designs are assumed to be front-ended by thelatch shown in Figure 2.15., mostly in

pipelined data-paths. The input vector causing minimum leakage is hardwired to the inputs of the

27



www.manaraa.com

latch which incurs very less area overhead. The sleep signalis used to activate/deactivate the input

of the latches within a time period of one clock cycle. The significant overhead in power, is the

transition from the state in which the module was to the stateof minimum leakage caused by low

leakage input vector. The time for which the unit is idle mustbe long enough so that the dynamic

power dissipated in switching to the low-leakage input is less than the leakage power consumed

during the same time if there is no transition to low-leakageinput. Hence the minimum idle time

of the unit that overcomes the dynamic power dissipation to obtain actual savings is estimated by

the following formula [16]:

�� ����	�� � � � ���� ������ ���� �� (2.3)

�� ��	�� � � � ����� ������� � �� � � ��� � � � � � � � �� � � ����� ������� � ��� � � � � (2.4)

A_ext

A_int

Sleep

VDD

Sleep

Sleep

A_ext A_int

Sleep

GND

Figure 2.15. Modified Latches with Optimum Sleep Values (0 and 1)

where� ���� is the power wastage if no leakage technique is used,� ����� is the leakage power

obtained after applying the technique,� � � and� �� give the energy dissipated by the additional

circuitry during�� � and��� , respectively.

2.2.2.2 Power Gating

Low power circuit technology is very essential to minimize the size of portable devices and

to reduce the battery life-time. In such devices, power supply should be reduced due to the low

breakdown voltage of source-drain. Reduction in supply voltage leads to an increase in delay.

To avoid the delay and increase the circuit speed, the threshold voltage� � is decreased. Though

28



www.manaraa.com

lowering � � reduces the delay and increases the operation speed, the standby leakage current due

to the sub-threshold characteristics increase drastically. High � � MOS transistors to cut off leakage

paths because of their low leakage current.

Mutoh and Matsuya [17] propose the MTCMOS circuit technology that preserves data during

sleep mode to achieve lower threshold voltage and a smaller standby leakage current. This tech-

nology uses both high and low threshold voltages on the same chip. The logic gates are designed

to have low�� MOS transistors which are not connected to the VDD and GND directly but to a

virtual VDDV and GNDV. These transistors are called power transistors.

VDD

VDDV

SL Q (High V
t
)

Low V  Logic
 t

GNDV

SL Q

GND

(High V )
t

Figure 2.16. MTCMOS Latch Circuit

There are two operating modes in these transistors called active and sleep. In the active mode,

the power transistors are on. The VDDV and GNDV function as VDD And GND respectively. In

this mode, the low-�� logic gates function at high speed. In the sleep mode, the power transistors

are cut off. In Figure 2.16., the transistor Q has a high� � and hence a low leakage current from the

low-�� MOS transistors which is almost suppressed. This leads to a dramatic reduction of standby

leakage current during the sleep mode.

In the sleep mode, in order to reduce the standby leakage current the power supplies are cut off

the logic circuits by using the high� � MOS transistors resulting in data loss. To ensure continuous

circuit operation, the data in the circuit should be preserved during the sleep mode. To overcome

this difficulty, the authors have developed an MTCMOS latch circuit for preserving data when in

29



www.manaraa.com

the sleep mode. The Figure 2.16. shows the MTCMOS latch circuit in which the latch path L,

consists of high-� � MOS inverters that are powered directly by VDD and GND to preserve data

during the sleep mode. TG1 in the critical path is the transmission gate composed of high-� �
transistors to cut off the standby leakage current path. Q1-Q4, high� � power transistors for sleep

control are connected to low-� � data path inverters independently to cut off the standby leakage

path.

The drawback of this latch circuit is that these data-path inverters does not have the speed of

the capacitance of the virtual power lines. In order to obtain the speed of the ordinary latch, the

power transistor Q1-Q4 have to be enlarged. Hence this circuit is a bottleneck during high-speed

operations because of the high-� � transistors in the critical path. The huge sizes of transistors

Q1-Q4 take up larger area leading to more wastage of power.

2.2.2.3 Transistor Stacking

Sub-threshold current [18], which increases due to the short channel effect becomes the major

factor of leakage in CMOS devices with thicker oxides. Transistor stacking is a very efficient

technique in lowering the sub-threshold leakage during thestandby-mode of an operation in a

circuit. An extra transistor [19] is placed between the supply line and the pull-up transistor for the

driver. When both the transistors are switched off, a slightreverse bias is caused between the gate

and source of the pull-up transistor. A considerable leakage current reduction is obtained based on

the fact that the sub-threshold current is exponentially dependent on the gate bias. Hence leakage

current that flows through a transistor stack depends on the number of “off” transistors in the stack.

Figure 2.17. [18] illustrates an example of a two-input NANDgate, in which both M1 and M2

are turned off. This raises the intermediate node voltage (�� ) to a positive value due to a small

drain current. There are three effects due to the positive potential at the intermediate node:

1. gate-to-source voltage of M1 (�� ��) becomes negative;

2. Body effect by the negative body-to-source potential (� ���) of M1;

3. Less drain-induced barrier lowering (DIBL) due to decrease of drain-to-source potential

(����) of M1;

30



www.manaraa.com

A

B

A B

V
M

M

M

 2

 1

VDD

V
B

= 0

GND

Figure 2.17. Two Input NAND Gate. Turning “off” M1 and M2 raises�� to Positive Value Causing
the “Stacking Effect”

The sub-threshold current [18] flowing through “off” transistor is given by

��� � � � �
��
� � ���� ����	
� ���
��� � �� � ��

���� ��� � (2.5)

where A =�� �� �� �� �� � � ��� �� �� � � �� . �� �, ���, and��� are the gate-to source, drain-to source

and the bulk-to-source voltages respectively.� and� are the DIBL coefficient and the body effect

respectively.� �	� is the zero-bias threshold voltage.� �� is the gate-oxide capacitance.� � � is the

zero-bias mobility, and n is the sub-threshold swing coefficient. It is observed from the equation

above that, with a negative�� �, and increase in the body effect (negative���), and a reduction in

���, the sub-threshold current is reduced exponentially.

Narender and Ranganathan [20] propose a technique called LECTOR to reduce leakage power

by effective stacking of transistors in the path from supplyvoltage to ground. They introduce two

leakage control transistors in each CMOS gate such that onleof the leakage control transistor is

near its cutoff region of operation.

Figure 2.18. [20] shows two leakage control transistors�� � � (PMOS) and�� � � (NMOS)

between the nodes� � and� � of the pull-up and pull-down network of the NAND gate. The drain

nodes of the transistors�� � � and�� � � are connected together to form the output node of the

NAND gate. The source nodes of the transistors are connectedto nodes� � and� � of pull-up and

31



www.manaraa.com

A

M

N

M

N

LCT

LCT

N

MM

Vdd

Out

Additional

circuitry

in

in

Gnd

4

3

3

2

2

1

1

21

B

Figure 2.18. LECTOR Technique

pull-down logic, respectively. The voltage potentials at nodes� � and� � control the switching of

transistors�� � � and�� � �. This configuration ensures that irrespective of the input vector applied

to the NAND gate, one of the LCTs is always near its cutoff region resulting in the reductiong of

leakage power.

2.3 Summary

In this chapter, we outlined five applications that are basedon context-aware mobile computing

and power optimization techniques at the logic and RT levels. We also outlined the novelty of our

approach as compared to the existing applications based on context-aware mobile computing.

32



www.manaraa.com

CHAPTER 3

MOBILE INTERACTIVE GUIDE

Future mobile computing environment promises to remove theconstraints of stationary desktop

computing from users. Mobile environment applications should make use of contextual informa-

tion, like the user’s location, user’s activity, time of theday, user’s nearby objects, to provide more

services to the user. Information of position improves the utility of a tour guide application.

We present a novel Mobile Interactive Campus Tour Guide project, in which we are building

the prototypes of a mobile context-aware tour guide. The goal of this application is to provide

the user with all the features and functionalities without using wireless communication unlike the

existing applications. There is no central server for this application. All computations necessary

for providing the output respective to the user’s input is done by the portable device. This reduces

cost and communication overhead on any mobile device. Depending on the user’s mobility, the

current location of the user is obtained by using a position tracking system. The coordinates of the

positional information and the user’s choice become the primary input for the device. The audio

file corresponding to this location is searched from the on-board Flash memory and played out,

giving information about the current location to the user. The application domain which has driven

the development of th mobile tour guide is mobility for students without a central server that has

to be communicated. In this chapter, we discuss the architecture and features of the Campus tour

guide, the high-level modeling, and high-level synthesis of the ASIC (NAVIGATOR).

3.1 High Level Modeling of NAVIGATOR

The mobile interactive campus tour guide is a hand-held device with a screen and a push button

interface, access to storage resources (memory module) to store information about specific loca-

tions, an audio output interface with speech generation, a PC interface through an USB (Universal

Serial Bus) port and a text output interface.

33



www.manaraa.com

TOUR GUIDE
CAMPUS

INTERACTIVE
MOBILE 

GPS COORDINATES

GPS SATELLITES

AUDIO

START

USER

Figure 3.1. Mobile Interactive Campus Tour Guide

Figure 3.1. gives the block diagram for the system design. The overall system can be considered

as one whole unit with positioning component, searching component, and information component.

The high level view of the system and the interface of components is given in figure 3.2.. The

required functionality of each of these components used forproviding the function are discussed

below:

GPS
ASIC

MEMORY

MODULE

AUDIO

INTERFACE

U
S
B

POWER

   PC

GPS
SATELLITE

RECEIVER

’START’

Figure 3.2. Overall Block Diagram of the System Design

34



www.manaraa.com

3.1.1 GPS Receiver

This is the positioning component of the system. The Global Positioning System (GPS) is used,

which gives the X, Y, and Z coordinates of the current location of the user. The output of the GPS

module is the latitude and longitude given as a 64 byte value,which is an input to the system.

3.1.2 USB Port

This is the interfacing component of the system that communicates with the external device to

get the data that has to be processed and provided to the user.The USB port is used as an interface

between the PC and this hand-held device. The data is down-loaded from the lookup table to the

memory module by using a Memory Card Writer that is installedin the PC. This is the only source

of external communication in the hand-held device.

3.1.3 Flash Memory

This is the storage component of the system, that stores all the data and information about the

specific physical locations around the campus. It stores thelookup-table and audio files of these

locations. The flash memory chosen for this design has a capacity of 32 MB. The flash memory

interfaces with the NAVIGATOR which reads the corresponding audio file and plays it out to the

audio CODEC. A flash memory is chosen considering later versions of this device will have text

displays about the current location that might need more memory.

3.1.4 Audio CODEC

This is the audio output component of the system, that plays out the serial data sent to it by the

NAVIGATOR. It compresses the serial data and plays out the audio for the current location, when

there is a match between the GPS coordinates obtained as an output from the GPS receiver and the

GPS coordinates stored in the memory.

3.2 Brief Description of the Flash Memory

The Sandisk Compact Flash Memory Card (CF) [21] is a high capacity solid state flash memory.

It supports the true IDE mode which is electrically compatible with and IDE disk drive. It has

35



www.manaraa.com

an intelligent on-card controller that efficiently managesdata storage, interface protocols, data

retrieval, power management and, clock control. Interfacing the host computer with the memory

card enables the user to access the flash memory card like a standard disk drive. The size of the

sector is 512 bytes which is the same as that in an IDE magneticdisk drive. The host computer

issues a Read or Write command to read or write a sector (or multiple sectors). This command

contains the address and the number of sectors to read/write. The intelligent on-board controller

performs all the necessary operations and provides the output to the host software’s request. This

reduces the intervention of the host software from getting into the details of programming, erasing,

or reading the flash memory.

SanDisk CompactFlash

Control

In/Out
Data

Host

Interface Controller
Chip
Single

SanDisk
MODULES

SANDISK

FLASH

Figure 3.3. Compact Flash Memory Card Block Diagram

Figure 3.3. shows the host interface with the SanDisk Compact Flash Memory Card and the

Read/Write timing diagram. The Compact Flash memory Card isconfigured in the True IDE Mode

in this design. This is done by grounding the -OE signal when power is applied to the card. In this

mode, input and output operations are allowed only to the Task File Registers and Data Register.

There is no access to the memory or the attribute registers bythe host. The Task File Registers

36



www.manaraa.com

provide status and control information which is done by seven registers accessed using a 3-bit

address bus. Each of the registers is described in detail below :

1. � ��� � �� �	��� : This is a 16-bit register used to transfer blocks of data from/to the Compact

Flash Memory Card data buffer and the Host. This register is overlapped with the Error Register

which gives information about the source of an error. This register is accessed to read/write data

using the address “000” and as an error register using the address “001”.

2.
�
����� � ���� � �� �	��� : This register contains the number of sectors of data requested by a

read or write operation to be transferred between the host and the Compact Flash Memory Card.

A value of zero indicates that 256 sectors will be transferred at the complete of the request. If this

command is completed successfully, zero value is availablein this register at command completion.

If unsuccessful, the register contains the number of sectors that need to be transferred in order to

complete the request.

3.
� ����� � �� 	�� � �� �	��� : This register contains the starting of the sector number for any

Compact Flash Memory Card data access for the subsequent command.

4. � � 
����� ��� � �� �	��� : This register contains the low order 8 bits of the starting cylinder

address.

5. � � 
����� � ��� � �� �	��� : This register contains the high order 8 bits of the startingcylinder

address.

6. � ��� � �� �	��� : This register is used to select the drive and head. It is alsoused to select the

LBA mode or CHS mode of addressing by setting the D6 bit to 1/0 respectively.

7.
� ���� 	 � �� �	��� / � ���� �
 � �� �	��� : This register returns the status of the Compact Flash

Memory Card when read by the host. The bits D7 and D3 are checked constantly from this status

register when data is read from the Compact Flash Memory. Bit7 is the busy bit which is set when

the Compact Flash Memory Card has access to the command buffer and registers and the host is

locked out from accessing the command register and buffer. When this bit is set to 1, the other

bits in this register are invalid. Bit 3 is the Data Request bit which is set when the Compact Flash

Memory Card requires that information be transferred either to or from the host through the Data

register. This register is used as a command register duringthe Write cycle, to write the command

indicating the Compact Flash about what operation to perform, for example, read sectors or read

long sectors etc. We give the value 20H for command register indicating it to read sectors.

37



www.manaraa.com

8. ���� �		��� � ���	: There are two modes to access the Compact Flash Memory Card,CHS

(Cylinder/Head/Sector) addressing and LBA (Logical BlockAddress) mode. CHS addressing

mode is the normal or default mode. In this mode, there is no translation done at the BIOS level,

and the logical geometry presented by the disk is used by the BIOS directly. While the LBA, in-

stead of referring a drive by its cylinder, head and sector number geometry in order to access it,

each sector is given a unique sector number. The drive is accessed by linearly addressing sector

addresses beginning at sector 1 of head 0 and cylinder 0 as LBA0 and proceeding on in a sequence

to the last physical sector on the drive. To use LBA addressing mode, it must be supported by both

the BIOS and the operating system.

The Compact Flash Memory Card uses the above described eightregisters for both CHS and

LBA addressing modes. The addressing mode chosen for this design is the CHS addressing mode.

3.2.1 FAT 16 Drive

The 32 MB Compact Flash Memory Card, that is used in this application uses the FAT table.

The structure of the FAT 16 [22] drive is given below:

1. � �	��� � ��� � ����� : The Master Boot Record is located at the first sector at Cylinder 0, Head

0 and Sector 1. It is the first piece of code that Memory Card runs when the system is switched

“on”.

2. � ��� � �����: The Boot Record is located in the first sector of every partition and gives useful

information about the disk that its on. The most useful information stored in the Boot Record is

the size of each sector (usually 512 bytes) and the total number of sectors. It typically starts with

a 3 byte jump instruction to where the bootstrap code is stored which is followed by an 8 byte

long string set. It supplies information on the locations ofthe FAT table and the Root Directory.

The other useful information stored in the Boot Record are number of bytes per sector, number of

sectors per cluster, number of root entries, number of sectors per FAT, number of sectors per track,

number of heads, number of hidden sectors, the volume name, and the serial number.

3. � �� � �	
�: The File Allocation Table (FAT) contains linked lists of files in the file system.

Any file or directory entry in a directory list contains a cluster number for the first chunk of the

38



www.manaraa.com

file or directory. For every cluster on the disk, there is an entry in the file allocation table which

occupies the number of bits that are used(12, 16 or 32). At this entry in the FAT a single word value

either points to the next cluster/chunk or it contains an end-of-file value. If the FAT entry is 0, then

there is no data in that cluster. If the FAT Entry is FFFFh, then it is the last entry in the chain. The

FAT entry 0001h-0002h indicates that these cluster numbersare not used, Fat entry 0003h-FFEFh

indicates that the clusters are used and gives the number of the next cluster and FAT entry FFF7h

indicates a bad sector in the cluster.

4. � �� ������ � ����
�
������� �: This is a special file that contains the names, attributes, last

modified times and other details concerning the files and sub-directories contained in it. Each entry

in the directory list is 32 byte long. Root directory is the only directory which is in a fixed location.

By reading the FAT table, we can follow through the file chainsbut we do not know where the file

begins. The directory entry holds the number of the first cluster of the file. To read a file, the first

cluster from the directory entry is read and indexed in the data area. The next cluster for the file

is looked upon in the FAT. The other values stored in the Root directory are the name of the file

which is 8 bytes long and its extension which is 3 bytes long, its attributes, the time that the file

was created, the date that the file was created, the date that the file was last accessed, the time that

the file was last modified, the date that the file was last modified and the size of the file.

3.3 Functionality of TOUR NAVIGATOR

A module is necessary to search, retrieve, and play out data from the memory. The search

module acts as an interface to all the components of the system. The inputs to the module are, a

64 byte GPS latitude and longitude of the user’s current location and a ‘GO’ signal from the user.

When the ‘GO’ signal is asserted, the NAVIGATOR starts comparing the input GPS co-ordinates

with the GPS coordinates stored in the lookup table stored inthe flash memory. If there is a match,

then the search module reads the address of the audio file corresponding to that current location

and sends the audio data as a serial data stream to the audio CODEC. The audio CODEC, takes in

the serial data and generates the audio output. If the GPS coordinates in the first location do not

match with the GPS coordinates of the current user’s location, then the control in the NAVIGATOR

39



www.manaraa.com

jumps to the address of the GPS coordinates of the next location and the process until a match is

found. If there is no match with any of the locations in the lookup table then it exits out of the loop.

GND

DASP

PDIAG

INPACK

A0

A1

A2

     IORD

    IORW

D0

D1

D2

D3

D4

D5

D7

D8

D9

D10

D11

D12

D13

D14

ATA SEL

CSEL

CD1

CD2

CS0

CS1

INTRQ

D8

D9

D10

D15

D14

D13

D12D11

START

CLEAR

CLOCK

FINISH

SDOUT

G0

G1

G2

G3

G4

G5

G6

G7

FLASH
MEMORY

CARD

D7

 REG

      REST

        VCC

         VS1

         VS2

        WE

       IORDY

IOCS16

D15

COMPACT

ASIC

A0

A1

A2

RD

WR

D0

D1

D2

D3

D4

D5

D6 D6

Figure 3.4. Diagram showing the Pin Interface of NAVIGATOR with Flash Memory Card

3.4 NAVIGATOR Design

The design of the search module is described at the behavior level with timing diagrams to

interface with the flash memory. The interface of pins between the NAVIGATOR and the flash

memory is given in figure 3.5., and the interface of signals between the NAVIGATOR and the

flash memory is shown in figure 3.6.. The addressing modes usedto access the data from the flash

memory are the CHS (Cylinder Head Sector) mode and LBA mode. A16 bit bidirectional data bus

is used to interface with the flash memory module to read and write data into the eight registers. A

3 bit address bus is used to select one of these eight registers. The output is a single bit to be sent as

a serial data output. When the ‘GO’ signal is asserted, the master boot record is read from the flash

memory. The master boot record is located at the very first sector given by the CHS address (C=0,

H=0, S=1) or LBA address (LBA=0). The CHS/LBA address is written on to the Task Files (also

known as the Command Block) which are the eight registers to write the cylinder, head and sector

addresses respectively in flash memory. The sector count register is written a value of 1 specifying

to the controller of the flash memory to read only one sector ata time. The command register is

40



www.manaraa.com

written a value of 20H which is a command for reading sectors in the flash memory. The minimum

write cycle needed to write onto these registers is 120 ns. Once these values are written into the

eight registers, the status register is polled constantly to check the status of the data available on

the data buffer. A value of ‘1’ on the seventh bit of the statusregister indicates the flash controller

is busy reading data from the flash memory. When the value of the busy is ‘0’, the 512 bytes of the

first sector are read onto the local memory on-board in terms of 16 bits put into a loop of 256 times

while the value of the third bit is ‘1’. The third bit of the status register becomes ‘0’ after the 512

bytes are read. The minimum read cycle time is 120 ns.

Read root directory entry 

and Data area
directory table, FAT table
Obtain starting address of root 

partition into the 

local memory

Read Boot record of 

Obtain address of first partition

into the local memory

Read Master boot record

Task file registers

for sector 0 into the 

Write CHS address 

Start

into local memory

Play audio as serial output

Search audio file name in the 

root directory table

file name

Get the corresponding audio Play error message 

Match?

A

A

lookuptable.txt

with those stored in the 

Compare the input GPSlatlong 

root directory table

Search for lookuptable.txt in

Figure 3.5. Flowchart with Steps involved in the NAVIGATOR Design

The CHS/LBA address of the FAT boot record is obtained from the first 512 bytes. This ad-

dress is again written onto the eight registers and the values of bytes per sector, sectors per cluster,

reserved sectors, maximum root directory entries and sectors per FAT are obtained. Using these

41



www.manaraa.com

values, the CHS/LBA address of the FAT table, the Root directory table and the data area are cal-

culated using the formula given below:

FLASH 

MEMORY

NAVIGATOR

DATA

WRITE

READ

ADDRESSADDRESS

READ

WRITE

DATA
16

3

Figure 3.6. Signals that Interface between NAVIGATOR and Flash Memory Card

� �� ��	
�	 � � ������ ���� �� ������ � � �� 	�� ��� �	��� ��� ����� 	

� ������ ������ ����� � � ������ ���� �� ������ � � �� 	�� ��� �	��� ��� ����� 	

� �� �� 	�� �� � ����� 	� ��� �� � ��
� ����� �� � � ������� �������� � � �� 	�� ��� �	��� ��� ����� 	

� �� �� 	�� �� � ����� 	 � ��� �� � ��
� �� ���� ��� ������ ������ ���� ��	� ����� � ��	� ��� �����

(3.1)

The FAT table is stored locally so as to get the required cluster numbers of the data area. The

root directory table is also stored locally to obtain the starting cluster number of a required location

of a file by using the filename. The filename of the lookup table is fixed, named as lookuptable.txt.

This filename is compared with the entries in the Root directory table. When there is a match, the

starting cluster number of the file containing the lookup table is obtained. Using the cluster number,

assuming that there are 32 sectors per head, the corresponding CHS/LBA address is found. The

pseudo-code to find the corresponding CHS address and LBA address with a given cluster number

is shown in Algorithm 1 and Algorithm 2 respectively.

42



www.manaraa.com

1. Clusters Per Head = Sectors Per Track/Sectors Per Cluster;
2. Sector address of Data Area = Cluster Number * Sectors Per Cluster;
3. Offset = Sector address of Data Area - Sectors Per Track;
4.while Offset� Number of Headsdo

Offset = Offset - Sectors Per Track;
end while

5. Cluster Number = Cluster Number - 2;
6. Cluster Number = Cluster Number / Clusters Per Head;
7.if Cluster Number� Number of Headsthen

Head Address of Data Area = Cluster Number;
else

while Cluster Number� Number of Headsdo
Cylinder address of Data Area = Cylinder address of Data Area+ 1;
Cluster Number = Cluster Number - Number of Heads;

end while
endif

Algorithm 1: Pseudo-code for Translation of Cluster Number into CHS Address

The first sector of cluster is read on to the local memory. The comparison of GPS co-ordinates

is done the 512 bytes on board. If there is a match, the audio file is searched. If there is no match,

512 bytes of next sector is read, and comparison of GPS co-ordinates is continued.

1.Offset = (Cluster Number - 2) * Sectors Per Cluster;
2. LBA address of Data Area pointed by Cluster Number = LBA address of begin-
ning of Data Area + Offset;

Algorithm 2: Pseudo-code for Translation of Cluster Number into LBA Address

Using the formulae mentioned in Figure 1 and Figure 2, the CHS/LBA address of the audio

file is obtained and written onto the eight registers of the Flash memory. The value of sector count

register is set to the value of sectors per cluster, indicating the flash memory to fetch the data of all

the sectors in that particular cluster. When a 16-bit data isread from the data register of the flash

memory, the 16-bit data is shifted right one by one and given to the output. Hence the output of the

search module is a serial data that is interfaced with the audio CODEC.

1. Cylinder = LBA /(Heads per Cylinder * Sectors per Track);
2. Temp = LBA mod (Heads per Cylinder * Sectors per Track);
3. Head = Temp/ Sectors per Track;
4. Sector = Temp mod Sectors per Track;

Algorithm 3: Pseudo-code for Translation of CHS Address into LBA Address

43



www.manaraa.com

3.5 Design of Memory Module

A memory module is modeled in behavioral VHDL to simulate thebehavior of the Flash mem-

ory. This is done to verify the functionality of the NAVIGATOR design. The timing for the read

and write cycles are modeled. Data is stored in a file similar to the Flash memory with each sector

containing 512 bytes. The memory module has the above mentioned eight registers of the Flash

memory. Depending on the values on these registers, the appropriate sector is read from the data

file and given as output to the NAVIGATOR. In the case of CHS addressing mode, the values of

cylinder, head and sector registers are used to index to the appropriate sector. In the case of LBA

addressing mode, LBA (7 down to 0) is written to the sector number register, LBA (15 down to 8)

is written to the cylinder low register, LBA (23 down to 16) iswritten to the cylinder high register

and LBA (27 down to 24) is written to the head register. A translation algorithm given in Figure 3

is written to translate the values in these registers to the corresponding CHS address, to access the

necessary sector from the data file.

3.6 Tools Used

This section gives a brief detail on the tools that are used togenerate the layout of the design.

1. High Level Modeling in VHDL

2. Behavioral Synthesis using AUDI

3. Logic Synthesis of controller using SIS

4. Layout Synthesis in Silicon Ensemble

5. Cadence Virtuoso Layout Editor

6. Translators

3.6.1 High Level Modeling in VHDL

The Hardware Description Languages that are used for this design are VHDL and Verilog.

They can be used for documentation, verification, and synthesis of large digital designs. They

can be used in three different approaches to describing hardware namely, the structural, data flow,

and behavioral methods of hardware description. This NAVIGATOR is described behaviorally in

VHDL. The behavioral description is submitted to AUDI whichsynthesizes a structural descrip-

44



www.manaraa.com

tion of the design in VHDL. The structural VHDL is translatedinto structural Verilog for further

synthesis and simulation of the design in CADENCE layout synthesis environment.

3.6.2 AUDI

AUDI is a behavioral synthesis system employed to synthesize a RT level design. The AUDI

system takes behavioral data flow graph (DFG) representation as input and gives a structural VHDL

output. Several scheduling algorithms such as ASAP (as-soon-as-possible), ALAP (as-last-as-

possible), FDS (Force Directed Scheduling) and simultaneous scheduling, allocation, and mapping

algorithm are implemented in AUDI giving the user various options to synthesize his/her design.

A clique partitioning heuristic [23] is used for allocationand binding. It generates a minimal

set of maximal sized cliques resulting in maximum sharing between the allocated components.

This heuristic is used for Functional Unit (FU) mapping and Register Mapping. For functional

unit mapping, the compatibility graph of the operations in the scheduled DFG is given as input.

For register mapping, lifetime analysis of the registers isdone before mapping. Two edges are

compatible if and only if they have non-overlapping lifetimes. A compatibility graph of the edges

in the DFG is formed. Multiplexers or buses are used for sharing functional units and registers. A

characterized standard cell library is used to synthesize the data path.

OUTPUTSINPUTS

CLOCK

CLEAR

FINISH

START

CONTROLLER DATA-PATH

Figure 3.7. RT Level Design given by AUDI

The top level design instantiates [23] a data path and a controller as given in Figure 3.8.. Control

signals and flags are used for communication between the controller and data path. The data path

45



www.manaraa.com

operates according to the control signals and flags generated by the controller. The controller is a

Finite State Moore Machine shown as in figure 3.8.. A single clock signal drives both the data path

and the controller. The controller allow the functional units to perform computation for the first

half of the clock cycle and generates control signals duringthe remaining half of the clock cycle.

During the IDLE (State 0) state, the circuit waits for an input vector on its primary inputs during

which the CLEAR signal clears the registers before start of operation. Once new inputs arrive at

the primary inputs, the START signal is asserted. This takesthe controller from the IDLE state to

State 1, generating control signals to the data path at everystate. The primary inputs are stored in

registers. Once the controller goes sequentially to all thestates, a FINISH signal is generated at the

end of last state and the primary outputs are stored in registers.

Finish = 1

St_art =1

St_art =0

NSTATE

1STATE

0STATE

Figure 3.8. Controller State Machine in AUDI

Synthesized design given by AUDI is simulated using CadenceVHDL Simulator at the RTL

Level. Layouts for designs were generated using Cadence Virtuoso Layout and functionally veri-

fied using HSPICE.

3.6.3 SIS

SIS (Sequential Interactive Synthesis) system is an interactive tool for synthesis and optimiza-

tion [24] of sequential circuits. If a state transition table, signal transition graph, or a logic-level

description of a sequential circuit is given, SIS produces an optimized netlist in the target technol-

46



www.manaraa.com

ogy while preserving the sequential input-output behavior. The output can be stored as a finite state

machine or as an implementation consisting of logic gates and memory elements. The program in-

cludes algorithms for minimizing the area required to implement the logic equation, algorithms

for minimizing delay, and a technology mapping step to map a network into a user-specified cell

library. The most common input to SIS is in the form of net-list of gates and a finite-state machine

in state-transition table form.

In our design, we use a translator to translate the controller of the design from the VHDL

format to the KISS format which is a format to specify a state transition table for a finite-state

machine to be given as input to SIS. KISS format is used extensively [24] in state assignment

and state minimization programs. A state is represented symbolically, the next symbolic state and

output bit-vector is indicated in a transition table given acurrent state and input bit-vector. Missing

transitions indicate don’t care conditions which denotes that a present state or input combination

has no specified next state or output. A ‘-’ in the output bit indicates the particular output can be

either 0 or 1.

State assignment is done on the state transition graph to mapit onto a netlist. State assignment

is done using state assignment programs that start with a state transition table and obtain optimum

binary codes for each symbolic state. A logic level implementation is obtained from these binary

codes by substituting them for symbolic states. A latch is created for each bit of the binary code.

JEDI and NOVA are two state assignment programs distributedwith SIS. NOVA is used for PLA-

based finite-state machines. JEDI is a general symbolic encoding program [24] for encoding both

inputs and outputs, that can be used for more specific state encoding problem, targeted for multi-

level implementations. We used JEDI for state assignment for our design.

The resulting netlist is written into a BLIF (Berkeley LogicInterchange Format) which con-

sists of interconnected single-output combinational gates and latches. The BLIF format allows

specification of latches and controlling clocks. The latches specified in BLIF are simple generic

delay elements which are mapped to actual latches in the technology library. BLIF also accepts

user-specified don’t care conditions.

The resulting BLIF file is read into SIS again and mapped with the library gates mentioned in

the GENLIB, which is library containing the description of logic gates and latches. The inputs,

outputs, pin names, pin loads, input-load, max-load, rise-block-delay, rise-fanout-delay, fall-block-

47



www.manaraa.com

delay, fall-fanout-delay of the components are specified inthe library. The library gate creates an

instance of a technology-dependent logic gate and associates it with a node that gives the output of

the logic gate.

The resultant mapped output is written into BDNET format which is used to connect com-

binational logic and registers. The file consists of instances of logic gates and latches with the

actual inputs and outputs mapped with the formal inputs and outputs. This file gives the structural

description of the state transition graph which is input to SIS.

3.6.4 Silicon Ensemble

Silicon Ensemble is an automatic place and route tool [25] byCADENCE that can perform all

the complex tasks needed to create the physical layout of an integrated circuit. It is designed to

place digital blocks quickly and efficiently. It performs floor planning, cell placement, and inter-

connect routing operations for standard cell-based integrated circuit and sub-circuit designs. The

floor planner allows setting up rows for placing the components. The placers include commands

for grouping cells based on connectivity, placing cells automatically, placing cells incrementally

and optimizing placement. The different functions that aresupported by Silicon Ensemble are

1. Multi-layer metal routing: You can route multi-layer metal designs, including dual-layer

channeled and triple-layer channeled and channel-less designs. The routers support over-

the-cell routing that avoids routing obstructions. The routers can also handle off-grid pins.

2. Mixed library support: Libraries can include rectilinear blocks as well as standard cells

and macros. This reduces the artificial constraints on blockdesigns and increases design

flexibility.

3. Correct-by-construction layout: Algorithms validate the layout during construction to ensure

that design rules are satisfied by the physical design

4. Automatic parameter tuning: The system automatically adjusts significant operational pa-

rameters according to the design data to produce the best layout while reducing the run time.

Manual adjustments can be done to some operational parameters to optimize the layout for

few large designs.

48



www.manaraa.com

5. Engineering change option: These are minor changes to thecompleted designs. The system

makes these changes without requiring the complete design cycle.

3.6.5 Cadence Virtuoso Layout Editor

Virtuoso Layout Editor is the industry-standard base-level custom physical layout tool of the

Virtuoso custom design platform. It supports the physical implementation of custom digital, mixed-

signal, and analog designs at the device-cell-and-block levels. The Virtuoso custom design platform

is a comprehensive system for fast, silicon-accurate design, and is optimized to support advanced

design methodologies such as custom design. Virtuoso includes the industry’s only specification-

driven environment, multi-mode simulation with common models and equations,vastly accelerated

layout, advanced silicon analysis for 0.13 microns and below, and a full-chip,mixed-signal integra-

tion environment.

Custom layout is enhanced with a set of user-configurable andeasy-to-use pure polygon layout

features within a multi-window environment in Virtuoso Layout Editor. Parameterization of cells

and a powerful scripting language called SKILL gives more acceleration providing direct database

access, tool configuration, and inter-operability with other tools. The advantages of Virtuoso Lay-

out Editor are easy creation and navigation of complex designs with unlimited hierarchy support

along with a multi-window editing environment, accelerated layout entry using the easily accessed

editing functions, increased design optimization and productivity using Pcells, and efficient han-

dling of large designs using the Open-Access database.

3.6.6 Translators

This section explains the path for generation of layout in Cadence Virtuoso Layout Editor with

three VHDL files generated from AUDI. The three VHDL files thatare output from AUDI are

the controller, data path and, the top-level design file, that concatenates the controller and the data

path of a design. A script including all the translators is written to generate a verilog file for the

whole design which is imported into Silicon Ensemble for automatic place and route. The output

of Silicon Ensemble is a DEF file, that is imported into Cadence Virtuoso Layout Editor to generate

the layout. The steps and the translators will be discussed in detail below.

49



www.manaraa.com

3.6.6.1 VHDL to KISS Translator

NAME: vhd2kiss

SYNOPSIS: vhd2kiss�filename�

DESCRIPTION: The filename is the controller file which is of the extension�filename� con.vhd

This translator takes in the controller file of the design andgives the output in the KISS format. The

KISS format is taken as input by SIS to generate the BDNET file for the controller. The translator

was designed using lex and yacc compiler tools.

3.6.6.2 BDNET to Verilog Translator

NAME: bdnet2verilog

SYNOPSIS: bdnet2verilog�design name�

DESCRIPTION: The�design name� is the name of the design for which the layout is gen-

erated with no extensions. This translator takes in the BDNET file that is generated by SIS as input

and generates a verilog file for the controller of the design.The BDNET file has the inputs and

outputs of the controller and the gates mapped with the signals of the controller as the inputs and

outputs according to the functionality.

3.6.6.3 VHDL to Verilog Translator

NAME: vhd2vl

SYNOPSIS: vhd2vl�design� dp.vhd�design� des.vhd

DESCRIPTION: The�design� dp.vhd is the name of the file containing the description of

data path in VHDL and�design filename� is the name of file containing the top-level of the

design in VHDL.This translator takes in the�design� dp.vhd and the�design� des.vhd as

inputs and generates three verilog files with the primary inputs and outputs of the design and the

data path for the design. It generates a�design� dp.v which has all the components used for the

data path and their mapping of inputs and outputs, a�design� des.v which has the name of the

design as the module, the primary inputs and outputs and a�design� dp.inter which contains all

the intermediate signals that are used in the data path to mapthe inputs and outputs to the instances

of the gates.

50



www.manaraa.com

3.6.6.4 Steps to Generate the Layout

STEP 1 : Obtain the three VHDL files (controller, data path, and design) from AUDI.

STEP 2 : Give the controller file as the input to the vhd2kiss translator to generate the KISS

file.

STEP 3 : Give the KISS file as input to the script for SIS to get the BDNET file as output.

STEP 4 : Give the BDNET file as an input to the bdnet2verilog translator to get the verilog file

of the controller.

STEP 5 : Give the data path file and the design file from AUDI to the vhd2vl translator which

will give the verilog files for the data path and the design file.

STEP 6 : Concatenate all the four verilog files (verilog design file, verilog intermediate file,

verilog controller file, and verilog data path file) to get thefinal verilog file for the design.

STEP 7 : Replace the name of the final verilog file in the se.ini file which is read when Silicon

Ensemble is invoked.

STEP 8 : Invoke Silicon Ensemble.

Steps 1-6 are automated by writing a script with the executable named�������
���� � and

giving the three VHDL files as input.

3.6.6.5 Functionality of Back-end Tool

This section gives a full explanation of why and how each toolis used in this design process.

The higher level flow to design and synthesize a low power implementation of any design is given

in figure 3.9.. The VHDL model of the design is done. AUDI is used to for generating the RT

level design from the VHDL (Behavioral) model that is described as a controller ,data path and

design. The controller is a finite state machine with severalstate transitions depending on inputs

and signals. SIS is used to generate the controller design asa logic and map this logic to standard

cell library. SIS takes KISS file as input file. The KISS formatgives the number of inputs, outputs,

states and the transitions of the states from one another. SIS reads the KISS file and does state

assignment using a program called jedi to assign values to the states and provides the latches to

change from one state to another. This state assignment is written into a BLIF file. The BLIF

file is read again in SIS and a standard cell library is also read and mapped. The resulting file is

51



www.manaraa.com

the BDNET file which has the all the primary inputs and outputsand the gates mapped from the

standard library for the logic.This BDNET file is given as input to the bdnet2verilog translator that

translates the file into a verilog file. Figure 3.10. explainsthe above mentioned steps.

Functional Verification of Design

Low-power feature

implementation

Logic and Layout 

Synthesis

RT Level

Synthesis

Behavioral

Design Specifications

Synthesis

Figure 3.9. Step to Design and Synthesize a Low Power System

The VHDL files for the data path and the design are given as inputs to the vhd2vl translator. It

translates these files into two intermediate files in verilogfiles. The�design� dp.v file has all the

data path in verilog format. The�design� des.v file has the primary inputs and outputs of the

design in verilog format translated from the�design� des.vhd. The�design� dp.inter file has

all the intermediate signals that are used for mapping the instances of the components in the data

path to be included in the main verilog file.

All the four verilog files obtained above namely the controller, data path, design, and the inter-

mediate signal file are concatenated into a single file. The se.ini file has all commands to automat-

52



www.manaraa.com

Low Leakage

Non-Low Leakage or

Flow2Flow1
RecoveryPerformance

and

Power Management

Binding

Selective

Binding

Automatic

(Clique Partitioning)

Allocation

Scheduling

(DFG)
Data Flow Graph

(VHDL)

Behavioral code

  

LIBRARY

CELL

STANDARD

     

RT-Level

AUDI

LIBRARY
CELL

STANDARD

Datapath(Verilog)

RT-Level

Automatic Place and Route

Silicon Ensemble

Power

Leakage 
NANOSIM

Spice Netlist

and 
Cadence Layout

HSPICEPower
Leakage

TranslatorTranslator
VHDL2VerilogBDNET2Verilog

Translator
VHDL2KISS

Datapath (VHDL)

Figure 3.10. Overall Data Flow Diagram of Synthesis of Design

53



www.manaraa.com

ically place and route the design in Silicon Ensemble. The name of the design is replaced in the

se.ini which refers to the library which has the abstract andlayout of the standard cells and Silicon

Ensemble is invoked which first reads all the contents of se.ini to automatically place and route the

entire design whose output is given to a DEF file. This DEF file is imported into cadence and the

layout is done which is simulated and tested.

3.7 Leakage Reduction Using Low-Leakage Standard Cells

Leakage power consumption has become a very significant partof the total power consumption

due to an increase in the chip speed and density in sub micron scale. A five time increase in leakage

power has been observed, leading it to be equal to the dynamicpower of the circuit. Leakage power

becomes a major component of power dissipation in portable and wireless applications due to the

increased idle time of the circuits.

The data path obtained from AUDI comprises of components from a parameterized macro-cell

library, developed by the University of Cincinnati [23]. The library consists of adders, subtractors,

multipliers, registers, multiplexers, and buses.

We use automatic place and route of standard cells to build the design. The entire design is

presented in terms of standard cells ensuring the ease of a user to obtain the layout of his design

with the basic leaf gates. A characterized standard cell library consisting of layouts of all the above

functional, storage and interconnect units is built using the deep sub-micron technology. Each of

these macro cells are transformed in terms of their standardcells. The macro cell components in

the data path synthesized by AUDI, instantiates the standard cells to form a macro cell layout.

The authors Jayakumar and Khatri [?] have proposed the design of standard cells with pre-

dictably low leakage currents depending on the inputs of a gate. If the inputs to a cell during

standby mode of operation are such that the output has a high value, then the leakage is minimized

in the pull-down network by introducing a high� � NMOS device connected to the	����	� signal.

Similarly, if the inputs of a cell during standby mode is suchthat the output has a low value, then

the leakage is minimized in the pull-up network by introducing a high� � PMOS device connected

to the standby signal.

54



www.manaraa.com

The inputs to our design cannot be predicted a priori due to the uncertainty of the user’s loca-

tion. Hence, we extend the above concept of leakage-immune standard cells by introducing sleep

transistors to cut off the power supply or ground [26] of the leaf cells in the standard-cell library. A

low-�� sleep transistor (PMOS or NMOS) is introduced for every component between the power

supply or ground and the power terminal of the circuit, thus acting as a virtual Vdd. The signal

SLEEP is connected to the sleep transistor to switch betweenthe ‘active’ and ‘sleep’ modes. In

the active mode, the SLEEP signal is set to ‘0’, thus turning on the sleep transistor. With a very

small on resistance the sleep transistor acts as a real powerline. Hence, the gate operates in the

normal mode. In the sleep mode, the SLEEP signal is set to ‘1’,turning off the sleep transistor, so

that the virtual Vdd line is floating and vice versa for the
�
��� � signal. One sleep transistor is

sufficient to reduce leakage power in each standard cell. TheSLEEP signal is a global signal that

is connected to all the SLEEP signal of all the leaf cells in the data path of the design. On enabling

the global SLEEP signal, the entire data path of the design isput to sleep.

SLEEP

STANDARD CELL

VDD

GND

SLEEP

VDD

CLEAR

GND

REGISTER

Figure 3.11. Standard Cell with Sleep Transistor

Our standard cell library with sleep transistors consists of the following cells: INV, AND2,

OR2, NAND2, NOR2, XOR2, COMPARATOR2, SRAM, 1-BIT MUX, 1-BITFULL ADDER,

1-BIT REGISTER. When there is a CLEAR signal, the registers need to be active. Hence for this

purpose, an additional parallel transistor as shown in the figure 3.13.. To further reduce the leakage

power in registers, the clock of the registers is cut down during the sleep mode using the concept

of clock gating [11]. When the sleep signal is active, the clock to the registers are shut down, so as

to reduce the switching activity during the sleep mode, leading to more leakage power reduction.

55



www.manaraa.com

3.7.1 Leakage-Delay Tradeoff

Each of the standard cells with sleep transistors exhibit different leakage power characteristics

depending on the width of the sleep transistor. During the sleep mode, the pull-up or pull-down

network is isolated from the supply lines either by a low� � PMOS sleep transistor or low� � NMOS

transistor respectively. The leakage power dissipated during the sleep mode is majorly due to the

sleep transistor. The standard cell library has been characterized for leakage power as a function

of the sleep transistor width during the sleep mode. It is observed that, as the width of the sleep

transistor increases, the leakage power dissipated by the sleep transistor increases. This is due to

the fact that the sub-threshold leakage current depends on the (W/L) ratio of the transistor. But

with an decrease in width of the sleep transistor, the delay of the gate increases. Hence, the leakage

power savings and delay are inversely proportional to the width of the sleep transistor. Power

characterization is done using HSPICE.

Figure 3.12. Leakage Power Vs Transistor Width

Figure 3.13. Delay Vs Transistor Width

56



www.manaraa.com

3.7.2 Summary

In this chapter, we have given a detailed description of the design and synthesis of the NAVIGATOR

(ASIC), designed for the search-and-play module of the tourguide. We have designed the tour

guide to provide service to the user depending only his location of a pre-decided tour plan and has

no communication with a server to access data. We have also described the technique chosen for

the tour guide to reduce leakage power dissipation. Experimental results are presented in Chapter

4.

57



www.manaraa.com

CHAPTER 4

EXPERIMENTAL RESULTS

We present a detailed description of the synthesis of ASIC and the synthesis environment. The

results obtained by using the leakage reduction technique are also presented. The backend tool,

developed to generate the layout from RTL design is validated using benchmarks.

4.1 Design Flow

The design steps to synthesize the ASIC are explained below:

1. Behavior of ASIC coded in VHDL.

2. VHDL code is translated into the AIF (Data flow graph), intermediate format.

3. AIF format is given as input to AUDI.

4. The RTL level design obtained as a result from AUDI is givenas input to the backend tool

developed thus synthesizing the Cadence layout using standard cels with sleep transistors.

5. The design is extracted using the extract command in Cadence.

6. The netlist file is obtained from the extracted design.

7. The leakage power of the design is measured using HSPICE using a script coded in shell

script taking into account the leakage power of the transistors that are in the “off” state.

8. Steps 4-7 are repeated again using the standard cell library with sleep transistors.

9. The same input sequence given in Step 7 are given to this lowpower circuit and simulated

and the power is measured.

The following are the results presented for this design,

58



www.manaraa.com

1. The input and output waveforms for the ASIC design.

2. Effect of leakage power in individual standard cells withsleep transistors

3. Implementation of real-world applications such as DCT module, IIR, and FIR filters using

the above mentioned backend tool and sleep transistor to illustrate the reduction in leakage

power using this technique.

4. The layouts generated by the backend tool that takes the RTL VHDL design as input and

produces a transistor level design.

4.1.1 Behavioral Level Simulation Results for the ASIC Design

We present the simulation results of the high-level modeling of the NAVIGATOR. The flash

memory is modeled to check the functionality of the ASIC. Thedata that is stored in the flash

memory is written as a text file. The data is written in the CHS format similar to the data stored in

a Compact Flash Memory. Each sector contains 512 bytes of data.

The first sector contains the Master Boot record which contains information about the start of

the partition. The Root directory and the FAT table are stored with their corresponding values in

the consecutive sectors. The GPS latitude and longitude data with the corresponding audio files are

stored in the sector representing the data area following the Root Directory entries. The remaining

sectors contain the audio data of the different locations.

The top level model integrates the ASIC module and the Flash memory module, thus presenting

the functionality of the tour guide. When inputs are given tothe top level model, the ASIC module

sends out signals and data to the flash memory module. The flashmemory module reads in the

data from the text file corresponding to the address received, and send back the data to the ASIC

module. The audio information is played out serially bit by bit, to be played to the user by the

audio codec.

The ‘go’ and ‘GPSlatlong’ signals are the primary inputs to the top level module. ‘RD’, ‘WR’

and ‘address’ signals are the output signals of the ASIC module and the input signals for the Flash

memory module. The ‘data’ signal is a bidirectional signal to read and write data into both the

59



www.manaraa.com

ASIC and the Flash memory modules respectively. The ‘sdout’signal is the primary out of the top

level module which outputs the serial audio data.

Figure 4.1. shows the results, when the ASIC interfaces withthe flash memory module to

search for a match. The CHS/LBA addresses to be written on to the Task file registers appear on

the ‘data’ bus. Figure 4.2. shows the output serial audio data stream when there is a match of GPS

co-ordinates.

4.1.2 Low-Leakage Standard Cells

In this section, we present the results obtained for reduction in leakage in standard cells when

a sleep transistor is introduced in the P-network.When a “HIGH” gate voltage is applied across the

sleep transistor, the circuit is gated from the VDD supply. Gating the VDD, reduces the leakage

current flowing through the pull-up network when one or more transistors are in the “OFF” state.

The sleep transistors in our standard cell library are sizedthree times the size of the transistors in

the pull-up network. Hence the worst-case output delay penalty over all the gate input transistions

is not larger than 15%. By increasing the size of the sleep transistor even more, will result in more

reduction in leakage and delay. The standard height of the cells in the standard cell library, used

for place and route of the design using Silicon Ensemble, andincrease in area overhead, become a

limiting factor to the width of the sleep transistor. Sizingof the sleep transistor three times the size

of the pull-up network, show significant leakage power savings and a small increase in delay for

all input combinations of each of the standard cells. Table 4.1. shows the leakage values of all the

standard cells in the library with and without sleep transistors. Table 4.2. shows the delay overhead

incurred due to the addition of the sleep transistor. The layouts for the standard cells with sleep

transistors are also given.

4.2 Real World Applications

The standard cell library with leakage and delay optimizations presented above is used in the

synthesis of some real world applications such as DSP filterssuch as IIR, FIR, and benchmarks

60



www.manaraa.com

Page 1 of 1

Printed by SimVision from Cadence Design Systems, Inc.Printed at 14:08:41 on Tue, Mar 23, 2004

Cursor−Baseline = 486,036,563,813fs

Baseline = 0

Cursor = 486036.563813ns

Figure 4.1. Behavior of ASIC when ‘go’ Signal is Asserted

61



www.manaraa.com

Page 1 of 1

Printed by SimVision from Cadence Design Systems, Inc.Printed at 14:10:02 on Tue, Mar 23, 2004

Cursor−Baseline = 486,036,563,813fs

Baseline = 0

Cursor = 486036.563813ns

Figure 4.2. Serial Audio Data Output when there is a Match

62



www.manaraa.com

Table 4.1. Leakage Power Savings in Standard Cells

Gate Leakage without Leakage with Power Savings
sleep (nF) sleep (nF) (%)

NOR 19.186 4.5779 76.13
NAND 1.835 1.0217 44.30
AND 36.143 3.9287 89.13
OR 38.842 9.6520 75.15

XOR 7.068 1.1894 83.17
1-bit ADDER 194.670 31.9410 83.59

Dlatch 61.440 7.2620 88.18

Table 4.2. Delay Overhead Due to Sleep Transistor in Standard Cells

Gate Delay without Delay with Overhead
sleep (ns) sleep (ns) (%)

NOR 0.283 0.292 3.18
NAND 0.067 0.074 10.44
AND 0.109 0.133 22.01
OR 1.775 1.927 8.56

XOR 2.024 2.253 11.31
1-bit ADDER 7.455 8.235 10.46

Dlatch 0.211 0.317 50.23

such as FFT and DCT. The leakage power for these applicationsis shown in Table 4.3.. The area

overhead incurred due to the addition of sleep transistors is given in Table 4.4..

Table 4.3. Leakage Power Savings in Real World Applications

Application Leakage without Leakage with Power Savings
sleep (nF) sleep (nF) (%)

IIR 36590 9710 73.40
FIR 23120 9479 59
DCT 33360 13330 60.04
FFT 45930 1375 68

ELLIP 33290 13480 59.50

From Table 4.3., we observe that there is an average 65% leakage power savings with an aver-

age area overhead of 21%.

63



www.manaraa.com

Table 4.4. Area Overhead in Real World Applications

Application Area without Area with Overhead
sleep (�� �) sleep (�� �) (%)

IIR 400725.18 508628.98 26.90
FIR 495039.47 594757.32 20.26
DCT 717974.60 870332.51 21.22
FFT 300869.44 349845.36 16.28

ELLIP 598371.84 657935.77 9.95

4.3 Layouts Generated by Back End Tool

This section gives the results from the backend tool developed to obtain the layout of the syn-

thesized designs. The layouts for FIR filter, DCT, and FFT benchmarks are shown in Figures 4.3.,

4.4., and 4.5..

4.4 Summary

Experimental results and waveforms are shown for the designand simulation of the NAVIGATOR

(ASIC). The back-end tool developed is validated by using the several benchmarks. The leakage

standard cell library with Gated Vdd style is shown to be effective

64



www.manaraa.com

Figure 4.3. Generated Layout for IIR Filter

65



www.manaraa.com

Figure 4.4. Generated Layout for DCT Application

66



www.manaraa.com

Figure 4.5. Generated Layout for FFT Application

67



www.manaraa.com

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

We presented a novel approach in location-aware computing by designing a tour guide that is

dependent only on the user’s current location. Other applications developed in this area depend

on communication with an external server, which restricts the mobility of the user withing the

range of the server. There is also an overhead of communication on the device and the cost of

implementing wireless network with the server. Our system does not suffer from these overheads.

It gives the user the information about every location and the nearby location in the pre-planned

tour, enabling him to keep track of his location corresponding to the tour plan. The functionality of

searching and playing the audio information of the user’s current location is modeled in behavioral

VHDL as a low power ASIC. To facilitate the generation of physical layout, a back end tool is

developed. The validation of the back end tool is done using several benchmarks. This leads to the

physical implementation of the ASIC with very less user intervention using automatic place and

route. Leakage power is reduced by introducing sleep transistors that gate the Vdd in the standard

cells, that are used in place and route

5.1 Future Research

The following are the most possible extensions to the proposed approach:

1. Incorporate textual display for the current location to give an option of audio or text output

to the user.

2. Incorporate an indoor positioning system to provide service to the user.

3. Inclusion of more user options, such as repeat, scrollingthe menu, etc.

4. Synthesis of the entire functionality of the system on a single chip (System on a Chip).

5. Automatically retrieve audio/text data as the GPS co-ordinates change.

6. Implement sleep transistors and sleep signal for the controller of the design.

68



www.manaraa.com

REFERENCES

[1] M. Cravatts A. Asthana and P. Krzyzanowski. An indoor wireless system for personalized
shopping assistance. InIEEE Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, US, 1994.

[2] J. Youll, J. Morris, R. Krikorian, and P. Maes . “Impulse:Location-based Agent Assistance
”. MIT Media Lab.

[3] N. Marmasse, C. Schmandt. “Location-aware informationdelivery with comMotion ”.MIT
Media Laboratory.

[4] G. Chen and D. Kotz. “ survey of context-aware mobile computing research”. Technical
Report TR2000-381, Dept. of Computer Science, Dartmouth College, November 2000.

[5] B. Schilit, N. Adams, and R. Want. “ Context-aware computing applications”.Proceedings
of IEEE Workshop on Mobile Computing Systems and Applications, pages 85–90, December
1994.

[6] J. Bergqvist, P. Dahlberg, H. Fagrell, and J. Redstrom. “Location Awareness and Local Mo-
bility”.

[7] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper and M. Pinkerton. “Cyberguide: A
mobile context-aware tour guide”.Wireless Networks, 3:421–433, October 1997.

[8] “http://iroi.seu.edu.cn/books/asics/ASICs.htm/anchor11320 ”.

[9] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. “Low-Power CMOS Digital Design”.
IEEE Journal of Solid-State Circuits, 27:473–484, April 1992.

[10] K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou. “Developing a Context-aware
Electronic Tourist Guide: Some Issues and Experiences ”.Distributed Multimedia Research
Group, Department of Computing, Lancaster University.

[11] L. Benini, G. De Micheli. “Transformation and synthesis of FSMs for low power gated clock
implementation”. In Proceedings of the 1995 ACM/IEEE International Symposium on Low
Power Design, pages 21–26, 1994.

[12] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and M. Papaefthymiou. “Precomutation-
based sequential logic optimization for low power”.In Proceedings of the 1994 International
Conference on Computer Aided Design, pages 398–402, November 1993.

[13] V. Tiwari, S. Malik, and P. Ashar. “Guarded evaluation:Pushing power management to
logic synthesis/design”.In Proceedings of the 1995 International Symposium on Low Power
Design, pages 221–226, November 1995.

69



www.manaraa.com

[14] J. Monteiro, S. Devadas, and A. Ghosh. “Retiming sequential circuits for low power”. In
Proceedings of the IEEE International Conference on Computer Aided Design, pages 398–
402, November 1993.

[15] C. Papachristou, M. Nourani, and M. Spining. “A Multiple Clocking Scheme for Low-Power
RTL Design ”. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 7:266–
276, June 1999.

[16] Y.Ye,S.Borkar, and Vivek De. “A New Technique for Standby Leakage Reduction in High-
Performance Circuits ”.Symposium on VLSI Circuits Digest of Technical Papers, 10, 1998.

[17] S. Mutoh, S. Shigematsu, Y. Matsuya, Y. Tanabe, J. Yamada. “A 1-V High-Speed MTCMOS
Circuit Scheme for Power-Down Application Circuits”.IEEE Journal of Solid-State Circuits,
32(11):861–869, June 1997.

[18] S. Muhkopadhyay, C. Neau, R. T. Cakici, A. Agarwal, C. H.Kim, K. Roy. “Gate Leakage
Reduction for Scaled Devices Using Transistor Stacking ”.IEEE Transactions on Very Large
Scale Integration(VLSI) Systems, 11(12):716–730, August 2003.

[19] Z. Chen, M. Johnson, L. Wei and K. Roy. “Estimation of Standby Leakage Power in CMOS
Circuits Considering Accurate Modeling of Transistor Stacks”. Proceedings on Low Power
Electronics and Design, (13):239–244, August 1998.

[20] N. Hanchate and N. Ranganathan. “LECTOR: A Technique for Leakage Reduction in CMOS
Circuits”. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 12:196–205,
February 2004.

[21] SANDISK, editor. “Compact Flash Memory Card Product Manual”. SANDISK Corpora-
tion, 2002.

[22] “http://www.maverickos.dk/FileSystemFormats/FAT16 FileSystem.html”.

[23] C.Gopalakrishnan. “http://80-purl.fcla.edu.proxy.usf.edu/fcla/etd/SFE0000147 ”.

[24] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R.
Stephan, R. K. Brayton, and A - S Vincentelli, editor.“SIS: A System for Sequential Circuit
Synthesis”. University of California, Berkeley, 1992.

[25] Cadence Design Systems, editor.“Envisia-Silicon Ensemble Place and Route Reference ”.
Cadence, 2000.

[26] N. Jayakumar, S. P. Khatri. “An ASIC Design Methodologywith Predictably Low Leakage,
using Leakage-immune Standard Cells”. InISLPED, August, 2003.

70



www.manaraa.com

APPENDICES

71



www.manaraa.com

Appendix A Behavioral VHDL Code of NAVIGATOR

-------------------------------------------------------------------------------
-- Navigator.vhd
--
-- Author:Uma
-- Created: Nov 2003
-- Last Modified: March 2004
--
-- Interfaces the off-the-shelf components of the Tour Guide to compare
-- the input GPS co-ordinates from GPS receiver with the GPS co-ordinates
-- stored in the lookuptable.txt. If there is a match , the corresponding
-- audio filename is read and the data stored in the audio file is played
-- out as a serial stream.
-------------------------------------------------------------------------------

library IEEE;
use IEEE.numeric_std.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use STD.TEXTIO.all;

entity flash is
port (

go : in std_logic;
GPSlatlong : in std_logic_vector(511 downto 0);
address: out std_logic_vector(2 downto 0);
data : inout std_logic_vector(15 downto 0);
sdout : out bit;
RD : out std_logic;
WR : out std_logic);
end flash;

architecture behavior of flash is
function bits_to_int (input :std_logic_vector )return INTEGER is
variable ret_val : INTEGER := 0;

begin
for i in input’RANGE loop

if input(i) = ’1’ then
ret_val := 2**i + ret_val;

end if;
end loop;
return ret_val;

end bits_to_int;

signal cyl_lowaddr : std_logic_vector(15 downto 0);
signal cyl_highaddr: std_logic_vector(15 downto 0);
signal head_addr : std_logic_vector(15 downto 0);
signal sect_countaddr : std_logic_vector(15 downto 0)

:= "0000000000000001";
signal sect_numberaddr : std_logic_vector(15 downto 0)

:= "0000000000000001";
signal cmd_addr : std_logic_vector(15 downto 0)

:= "0000000000100000";
type memory is array (0 to 255) of std_logic_vector(15 downto 0);
signal RootDir_mem : memory;
signal FAT_mem : memory;

begin
process
variable status : std_logic_vector(15 downto 0);
variable check : std_logic_vector(15 downto 0);
variable playout : bit_vector(15 downto 0);
variable playdata : std_logic_vector(15 downto 0);

72



www.manaraa.com

Appendix A (Continued)

variable cylsec,temproot : std_logic_vector(15 downto 0);
variable cylsectemp : std_logic_vector(7 downto 0);
variable shifttemp : std_logic_vector(7 downto 0);
variable head_concat : std_logic_vector(11 downto 0);
variable bootcylinderaddr : std_logic_vector(15 downto 0);
variable bootheadaddr : std_logic_vector(3 downto 0) ;
variable bootsectoraddr : std_logic_vector(15 downto 0);
variable fatcylinderaddr : std_logic_vector(15 downto 0);
variable fatheadaddr : std_logic_vector(3 downto 0);
variable fatsectoraddr : std_logic_vector(15 downto 0);
variable incfatcylinderaddr : std_logic_vector(15 downto 0);
variable incfatheadaddr : std_logic_vector(3 downto 0);
variable incfatsectoraddr : std_logic_vector(15 downto 0);
variable rootdircylinderaddr : std_logic_vector(15 downto 0);
variable rootdirheadaddr : std_logic_vector(3 downto 0);
variable rootdirsectoraddr : std_logic_vector(15 downto 0);
variable datacylinderaddr : std_logic_vector(15 downto 0);
variable dataheadaddr : std_logic_vector(3 downto 0);
variable datasectoraddr : std_logic_vector(15 downto 0);
variable incdatacylinderaddr : std_logic_vector(15 downto 0);
variable incdataheadaddr : std_logic_vector(3 downto 0);
variable incdatasectoraddr : std_logic_vector(15 downto 0);
variable incdatasectoroffset : std_logic_vector(15 downto 0);
variable sectorspercluster : std_logic_vector(7 downto 0);
variable sectorsperclustertemp1 : std_logic_vector(7 downto 0);
variable bytespersector : std_logic_vector(15 downto 0);
variable reservedsectors : std_logic_vector(15 downto 0);
variable rootdirentries : std_logic_vector(15 downto 0);
variable sectorsperFAT : std_logic_vector(15 downto 0);
variable maxrootdirentries : std_logic_vector(15 downto 0);
variable lookupentry : std_logic_vector(15 downto 0) ;
variable loopvar : std_logic_vector(15 downto 0);
variable tempfatentry : std_logic_vector(15 downto 0);
variable tempfatentrycopy : std_logic_vector(15 downto 0);
variable temproot1 : std_logic_vector(31 downto 0);
variable FATtable : std_logic_vector(4095 downto 0);
variable clustersperhead : std_logic_vector(7 downto 0);
--- integer declarations-
variable RDctr: INTEGER := 0;
variable file_ctr,file1,file2,file3,file4 : INTEGER :=0;
variable RootDir_Ctr : Integer;
variable FAT_Ctr : INTEGER;
variable sectorsperclustervar1 : INTEGER := 0;
variable playbit : INTEGER :=0;
variable bitcount : INTEGER :=0;
variable tempfatvar : INTEGER :=0;
variable flag : INTEGER :=1;
----these variables are to validate the full arithmetic operation
variable dtemp1 : std_logic_vector(31 downto 0) ;
variable dtemp2 : std_logic_vector(31 downto 0);
variable lookupfilename : std_logic_vector(87 downto 0);
--test datas
variable ltemp0 : std_logic_vector(15 downto 0);
variable ltemp1 : std_logic_vector(31 downto 0);
variable ltemp2 : std_logic_vector(47 downto 0);
variable ltemp3 : std_logic_vector(63 downto 0);
variable ltemp4 : std_logic_vector(79 downto 0);
variable ltemp5 : std_logic_vector(95 downto 0);
variable ltemp6 : std_logic_vector(111 downto 0);
variable ltemp7 : std_logic_vector(127 downto 0);
variable ltemp8 : std_logic_vector(143 downto 0);
variable ltemp9 : std_logic_vector(159 downto 0);
variable ltemp10 : std_logic_vector(175 downto 0);

73



www.manaraa.com

Appendix A (Continued)

variable ltemp11 : std_logic_vector(191 downto 0);
variable ltemp12 : std_logic_vector(207 downto 0);
variable ltemp13 : std_logic_vector(223 downto 0);
variable ltemp14 : std_logic_vector(239 downto 0);
variable ltemp15 : std_logic_vector(255 downto 0);
variable ltemp16 : std_logic_vector(271 downto 0);
variable ltemp17 : std_logic_vector(287 downto 0);
variable ltemp18 : std_logic_vector(303 downto 0);
variable ltemp19 : std_logic_vector(319 downto 0);
variable ltemp20 : std_logic_vector(335 downto 0);
variable ltemp21 : std_logic_vector(351 downto 0);
variable ltemp22 : std_logic_vector(367 downto 0);
variable ltemp23 : std_logic_vector(383 downto 0);
variable ltemp24 : std_logic_vector(399 downto 0);
variable ltemp25 : std_logic_vector(415 downto 0);
variable ltemp26 : std_logic_vector(431 downto 0);
variable ltemp27 : std_logic_vector(447 downto 0);
variable ltemp28 : std_logic_vector(463 downto 0);
variable ltemp29 : std_logic_vector(479 downto 0);
variable ltemp30 : std_logic_vector(495 downto 0);
variable ltemp31 : std_logic_vector(511 downto 0);

begin
wait until go = ’1’;
-------------------------------------------------------------------------
-------------Writing the cylinder low register in the flash
-------------------------------------------------------------------------
RD <= ’1’;
WR <= ’1’;
cyl_lowaddr <= "0000000000000000";
cyl_highaddr <= "0000000000000000";
head_addr <= head_concat & "0000";
sect_countaddr <= "0000000000000000";
sect_numberaddr <= "0000000000000000";
cmd_addr <= "0000000000100000";
wait for 25 ns;
Address <= "100";
data <= cyl_lowaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= cyl_highaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;

74



www.manaraa.com

Appendix A (Continued)

WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";

-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= sect_countaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= sect_numberaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";

-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
RootDir_Ctr := 0;
end loop;
while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
RootDir_mem(RootDir_Ctr) <= data;
if RootDir_Ctr = 223 then

bootheadaddr := data(3 downto 0);
elsif RootDir_Ctr = 224 then

75



www.manaraa.com

Appendix A (Continued)

cylsec := data;
end if;
RootDir_Ctr := RootDir_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
end loop;
-------------------------------------------------------------------------------
-- computing the cylinder address from cylsec value
-------------------------------------------------------------------------------
cylsectemp := cylsec(7 downto 0) AND "11000000";
shifttemp := cylsectemp;
cylsectemp(7 downto 2) := shifttemp(5 downto 0);
cylsectemp(1 downto 0) := "00";
bootcylinderaddr(7 downto 0) := cylsec(15 downto 8) OR cylsectemp;

-------------------------------------------------------------------------------
-- computing the sector address from cylsec value
-------------------------------------------------------------------------------
bootsectoraddr(7 downto 0) := cylsec(7 downto 0) AND "00111111";

-------------------------------------------------------------------------------
-- Accessing the Boot Record
-------------------------------------------------------------------------------
-------------------------------------------------------------------------
-------------Writing the cylinder low register in the flash
-------------------------------------------------------------------------
RD <= ’1’;
WR <= ’1’;
wait for 25 ns;
Address <= "100";
data <= bootcylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_concat & bootheadaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;

76



www.manaraa.com

Appendix A (Continued)

data <= "ZZZZZZZZZZZZZZZZ";

-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000000001";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= bootsectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
RootDir_Ctr := 0;
end loop;
while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
RootDir_mem(RootDir_Ctr) <= data;

if RootDir_Ctr = 5 then
bytespersector(7 downto 0) := data(15 downto 8);

elsif RootDir_Ctr = 6 then
bytespersector(15 downto 8) := data(7 downto 0);
sectorspercluster := data(15 downto 8);

elsif RootDir_Ctr = 7 then

77



www.manaraa.com

Appendix A (Continued)

reservedsectors := data;
elsif RootDir_Ctr = 8 then

maxrootdirentries(7 downto 0) := data(15 downto 8);
elsif RootDir_Ctr = 9 then

maxrootdirentries(15 downto 8) := data(7 downto 0);
elsif RootDir_Ctr = 11 then

sectorsperFAT := data;
end if;
RootDir_Ctr := RootDir_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
end loop;
-------------------------------------------------------------------------------
-- finding the starting of the FAT table
-------------------------------------------------------------------------------

fatcylinderaddr := bootcylinderaddr;
fatheadaddr := bootheadaddr;

fatsectoraddr := bootsectoraddr + reservedsectors;
if fatsectoraddr > "0000000000100000" then

if fatheadaddr < "0010" then
fatheadaddr := fatheadaddr + "0001";

fatsectoraddr := "0000000000000001";
else

fatcylinderaddr := fatcylinderaddr + "0000000000000001";
fatheadaddr := "0000";

fatsectoraddr := "0000000000000001";
end if;

end if;
incfatcylinderaddr := fatcylinderaddr;
incfatheadaddr := fatheadaddr;
incfatsectoraddr := fatsectoraddr;

-------------------------------------------------------------------------------
-- finding the starting address of the Root directory entry
-------------------------------------------------------------------------------

rootdircylinderaddr := fatcylinderaddr;
rootdirheadaddr := fatheadaddr;
temproot1 := sectorsperFAT * "0000000000000010";

rootdirsectoraddr := fatsectoraddr + temproot1(15 downto 0);
if rootdirsectoraddr > "0000000000100000" then

if rootdirheadaddr < "0010" then
rootdirheadaddr := rootdirheadaddr + "0001";

rootdirsectoraddr := "0000000000000001";
else

rootdircylinderaddr := rootdircylinderaddr + "0000000000000001";
rootdirheadaddr := "0000";
rootdirsectoraddr := "0000000000000001";

end if;

end if;
-------------------------------------------------------------------------------
-- Accessing the RootDirectory Table
-------------------------------------------------------------------------------
-------------------------------------------------------------------------
--Writing the cylinder low register in the flash
-------------------------------------------------------------------------
RD <= ’1’;

78



www.manaraa.com

Appendix A (Continued)

WR <= ’1’;
wait for 25 ns;
Address <= "100";
data <= rootdircylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_concat & rootdirheadaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000000001";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= rootdirsectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;

79



www.manaraa.com

Appendix A (Continued)

wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
RootDir_Ctr := 0;
end loop;
while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
RootDir_mem(RootDir_Ctr) <= data;
RootDir_Ctr := RootDir_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
end loop;
-------------------------------------------------------------------------------
-- finding the starting of the data area
-------------------------------------------------------------------------------

datacylinderaddr := rootdircylinderaddr;
dataheadaddr := rootdirheadaddr;
dtemp1 := maxrootdirentries * "0000000000100000" ;
dtemp2 := dtemp1;

for j in 0 to 8 loop
for i in 30 downto 0 loop

dtemp2(i) := dtemp2(i+1);
end loop;

dtemp2(30):= ’0’;
end loop;

datasectoraddr := rootdirsectoraddr + dtemp2(15 downto 0);
if datasectoraddr > "0000000100000000" then

datasectoraddr := datasectoraddr - "0000000100000000";
if datasectoraddr > "0000000000100000" then

if dataheadaddr < "0010" then
dataheadaddr := dataheadaddr + "0001";

datasectoraddr := "0000000000000001";
else

datacylinderaddr := datacylinderaddr + "0000000000000001";
dataheadaddr := "0000";
datasectoraddr := "0000000000000001";

end if;
end if;

end if;
incdatacylinderaddr := datacylinderaddr;

80



www.manaraa.com

Appendix A (Continued)

incdataheadaddr := dataheadaddr;
incdatasectoraddr := datasectoraddr;

-----------------------------------------------------------------------------------------
-- comparing the given GPS latitude longitude with the GPS coordinates mentioned in the
--lookuptable.txt
---------------------------------------------------------------------------------------
lookupfilename := <filename in bit represenation (12 bytes long)> ;
------------------------------------------------------------------------------
-- Searching for the location of the lookuptable.wav in the rootdirectorytable

------------------------------------------------------------------------------
file_ctr := 0;
ltemp0 := RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp2 := ltemp1 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & RootDir_mem(file_ctr);

if lookupfilename = ltemp5(95 downto 8) then
file_ctr := file_ctr + 8;
lookupentry := RootDir_mem(file_ctr);

else
for i in 1 to maxrootdirentries loop

file_ctr := file_ctr + 13;
ltemp0 := RootDir_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp2 := ltemp1 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & RootDir_mem(file_ctr);
if lookupfilename = ltemp5(95 downto 8) then

file_ctr := file_ctr + 8;
lookupentry := RootDir_mem(file_ctr);

end if;
exit when lookupfilename = ltemp5(95 downto 8);
end loop;

end if;
-------------------------------------------------------------------------------
-- incrementing the data area address to play the sector pointed by the
-- first cluster of the Rootdirectory entry
-------------------------------------------------------------------------------

clustersperhead := "00010000";
sectorsperclustertemp1 := sectorspercluster;
---Shifting Right to find the power of sectorspercluster:
while sectorsperclustertemp1 /= "00000001" loop

for i in 0 to 6 loop
sectorsperclustertemp1(i):=sectorsperclustertemp1(i+1);

end loop;
sectorsperclustervar1 := sectorsperclustervar1 + 1;
sectorsperclustertemp1(7) := ’0’;

end loop;
--Shifting right to divide 32/sectorspercluster to find the no.of clusters per head

81



www.manaraa.com

Appendix A (Continued)

for j in 1 to 3 loop
for i in 0 to 6 loop

clustersperhead(i) := clustersperhead(i+1);
end loop;
clustersperhead(7):=’0’;

end loop;
incdatasectoraddr := lookupentry(7 downto 0) * sectorspercluster;
-- lookupentry := lookupentry - "0000000000000010";
--Shifting right twice to divide by 4
for j in 0 to 4 loop

for i in 0 to 14 loop
lookupentry(i) := lookupentry(i+1);

end loop;
lookupentry(15):=’0’;

end loop;
if lookupentry < clustersperhead then

incdataheadaddr := lookupentry(3 downto 0);
else

while lookupentry > clustersperhead loop
incdatacylinderaddr := incdatacylinderaddr + "0000000000000001";
lookupentry := lookupentry - clustersperhead;

end loop;
incdataheadaddr := lookupentry(3 downto 0);

end if;
-----------------------------------------------------------------
-- Reading the lookuptable into local memory
-----------------------------------------------------------------
-------------------------------------------------------------------------
-------------Writing the cylinder low register in the flash
-------------------------------------------------------------------------

RD <= ’1’;
WR <= ’1’;
wait for 25 ns;
Address <= "100";
data <= incdatacylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_concat & incdataheadaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";

82



www.manaraa.com

Appendix A (Continued)

-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000001000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= incdatasectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
while counter /= sectorspercluster loop

RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop

RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
FAT_Ctr := 0;

end loop;
while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
FAT_mem(FAT_Ctr) <= data;
FAT_Ctr := FAT_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;

83



www.manaraa.com

Appendix A (Continued)

status := data;
RD <= ’1’;
wait for 25 ns;
end loop;
------------------------------------------------------------------------------------------------
-- Comparing the input GPS with the GPS values in the lookuptable
-------------------------------------------------------------------------------------------------

file_ctr := 0;
ltemp0 := FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp2 := ltemp1 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp6 := ltemp5 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp7 := ltemp6 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp8 := ltemp7 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp9 := ltemp8 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp10 := ltemp9 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp11 := ltemp10 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp12 := ltemp11 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp13 := ltemp12 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp14 := ltemp13 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp15 := ltemp14 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp16 := ltemp15 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp17 := ltemp16 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp18 := ltemp17 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp19 := ltemp18 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp20 := ltemp19 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp21 := ltemp20 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp22 := ltemp21 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp23 := ltemp22 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp24 := ltemp23 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp25 := ltemp24 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp26 := ltemp25 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp27 := ltemp26 & FAT_mem(file_ctr);

84



www.manaraa.com

Appendix A (Continued)

file_ctr := file_ctr + 1;
ltemp28 := ltemp27 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp29 := ltemp28 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp30 := ltemp29 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp31 := ltemp30 & FAT_mem(file_ctr);
file1 := file_ctr;

if GPSlatlong = ltemp31 then
file_ctr := file_ctr + 1;

file2 := file_ctr;
ltemp0 := FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp2 := ltemp1 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp5 := ltemp4 & FAT_mem(file_ctr);
lookupfilename := ltemp5(95 downto 8);

else
file_ctr := file_ctr + 7;

file3 := file_ctr;
ltemp0 := FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp2 := ltemp1 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp6 := ltemp5 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp7 := ltemp6 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp8 := ltemp7 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp9 := ltemp8 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp10 := ltemp9 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp11 := ltemp10 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp12 := ltemp11 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp13 := ltemp12 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp14 := ltemp13 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp15 := ltemp14 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp16 := ltemp15 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp17 := ltemp16 & FAT_mem(file_ctr);

85



www.manaraa.com

Appendix A (Continued)

file_ctr := file_ctr + 1;
ltemp18 := ltemp17 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp19 := ltemp18 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp20 := ltemp19 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp21 := ltemp20 & FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp22 := ltemp21 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp23 := ltemp22 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp24 := ltemp23 & FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp25 := ltemp24 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp26 := ltemp25 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp27 := ltemp26 & FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp28 := ltemp27 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp29 := ltemp28 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp30 := ltemp29 & FAT_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp31 := ltemp30 & FAT_mem(file_ctr);

if GPSlatlong = ltemp31 then
file_ctr := file_ctr + 1;

file4 := file_ctr;
ltemp0 := FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp1 := ltemp0 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp2 := ltemp1 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & FAT_mem(file_ctr);
file_ctr := file_ctr + 1;

ltemp5 := ltemp4 & FAT_mem(file_ctr);
lookupfilename := ltemp5(95 downto 8);

end if;
end if;

------------------------------------------------------------------------------
-- comparing the filename in lookuptable with one in the rootdirtable locally
------------------------------------------------------------------------------

file_ctr := 0;
ltemp0 := RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp2 := ltemp1 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & RootDir_mem(file_ctr);

if lookupfilename = ltemp5(95 downto 8) then
file_ctr := file_ctr + 8;

86



www.manaraa.com

Appendix A (Continued)

tempfatentry := RootDir_mem(file_ctr);
else

for i in 1 to maxrootdirentries loop
file_ctr := file_ctr + 13;
ltemp0 := RootDir_mem(file_ctr);

file_ctr := file_ctr + 1;
ltemp1 := ltemp0 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp2 := ltemp1 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp3 := ltemp2 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp4 := ltemp3 & RootDir_mem(file_ctr);
file_ctr := file_ctr + 1;
ltemp5 := ltemp4 & RootDir_mem(file_ctr);
if lookupfilename = ltemp5(95 downto 8) then

file_ctr := file_ctr + 8;
tempfatentry := RootDir_mem(file_ctr);

end if;
exit when lookupfilename = ltemp5(95 downto 8);

end loop;
end if;

incdatacylinderaddr := datacylinderaddr;
incdataheadaddr := dataheadaddr;
incdatasectoraddr := datasectoraddr;

---------------------------------------------------------------------------------------------
-- Reading all the entries of the first sector into a temporary FAT table
---------------------------------------------------------------------------------------------
incfatcylinderaddr := fatcylinderaddr;
incfatheadaddr := fatheadaddr;
incfatsectoraddr := fatsectoraddr;
loopvar := "0000000010000000";
-------------------------------------------------------------------------------
-- Storing the FAT Table locally
-------------------------------------------------------------------------------
-------------------------------------------------------------------------
--Writing the cylinder low register in the flash
-------------------------------------------------------------------------
RD <= ’1’;
WR <= ’1’;
wait for 25 ns;
Address <= "100";
data <= incfatcylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------

87



www.manaraa.com

Appendix A (Continued)

Address <= "110";
data <= head_concat & incfatheadaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000000001";
wait for 25 ns;

WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= incfatsectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;

WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
FAT_Ctr := 0;
end loop;
while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
FAT_mem(FAT_Ctr) <= data;

88



www.manaraa.com

Appendix A (Continued)

FAT_Ctr := FAT_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
end loop;
while flag=1 loop

if tempfatentry > loopvar then
incfatsectoraddr := incfatsectoraddr + "0000000000000001";
loopvar := loopvar + "0000000010000000";
if incfatsectoraddr >= "0000000000010000" then

if incfatheadaddr < "0010" then
incfatheadaddr := incfatheadaddr + "0001";
incfatsectoraddr := "0000000000000001";

else
incfatcylinderaddr := incdatacylinderaddr + "0000000000000001";
incfatheadaddr := "0000";
incfatsectoraddr := "0000000000000001";

end if;
end if;

-------------------------------------------------------------------------
--Writing the cylinder low register in the flash
------------------------------------------------------------------------
RD <= ’1’;

WR <= ’1’;
wait for 25 ns;

Address <= "100";
data <= incfatcylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;

WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_concat & incfatheadaddr;

wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";

89



www.manaraa.com

Appendix A (Continued)

-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000000001";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= incfatsectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop

RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
FAT_Ctr := 0;
end loop;

while (status(3) /= ’0’) loop
Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
FAT_mem(FAT_Ctr) <= data;
FAT_Ctr := FAT_Ctr + 1;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;

90



www.manaraa.com

Appendix A (Continued)

RD <= ’1’;
wait for 25 ns;
end loop;
end if;

tempfatentrycopy := tempfatentry;
incdatasectoraddr := tempfatentrycopy (7 downto 0) * sectorspercluster;
incdatasectoroffset := incdatasectoraddr - "0000000000100000";

while incdatasectoroffset >= "0000000000100000" loop
incdatasectoroffset := incdatasectoroffset - "0000000000100000";

end loop;

for j in 0 to 4 loop
for i in 0 to 14 loop

tempfatentrycopy(i) := tempfatentrycopy(i+1);
end loop;

tempfatentrycopy(15):= ’0’;
end loop;

if tempfatentrycopy < clustersperhead then
incdataheadaddr := tempfatentrycopy(3 downto 0);

else
while tempfatentrycopy > clustersperhead loop
incdatacylinderaddr := incdatacylinderaddr + "0000000000000001";
tempfatentrycopy := tempfatentrycopy - clustersperhead;

end loop;
incdataheadaddr := tempfatentrycopy(3 downto 0);

end if;
if incdatasectoraddr >= "0000000000100000" then

if incdataheadaddr < "0010" then
incdataheadaddr := incdataheadaddr + "0001";

incdatasectoraddr := incdatasectoroffset;
else

incdatacylinderaddr := incdatacylinderaddr + "0000000000000001";
incdataheadaddr := "0000";
incdatasectoraddr := incdatasectoroffset;

end if;
end if;

------------------------------------------------------------------------------
--Playing out the next cluster from data area and finding the next cluster
------------------------------------------------------------------------------
for i in 1 to sectorspercluster loop
-------------------------------------------------------------------------
-------------Writing the cylinder low register in the flash
-------------------------------------------------------------------------
RD <= ’1’;
WR <= ’1’;
wait for 25 ns;
Address <= "100";
data <= incdatacylinderaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the cylinder high register in the flash
-------------------------------------------------------------------------
Address <= "101";
data <= "0000000000000000";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;

91



www.manaraa.com

Appendix A (Continued)

WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the head register in the flash
-------------------------------------------------------------------------
Address <= "110";
data <= head_concat & incdataheadaddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector count register in the flash
-------------------------------------------------------------------------
Address <= "010";
data <= "0000000000000001";
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the sector number register in the flash
-------------------------------------------------------------------------
Address <= "011";
data <= incdatasectoraddr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Writing the command register in the flash
-------------------------------------------------------------------------
Address <= "111";
data <= cmd_addr;
wait for 25 ns;
WR <= ’0’;
wait for 70 ns;
WR <= ’1’;
wait for 25 ns;
data <= "ZZZZZZZZZZZZZZZZ";
-------------------------------------------------------------------------
-------------Reading the status register in the flash
-------------------------------------------------------------------------
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;
while (status (7) /= ’0’) loop

RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;
wait for 25 ns;

end loop;
while (status(3) /= ’0’) loop

92



www.manaraa.com

Appendix A (Continued)

Address <= "000";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
playdata := data;
RD <= ’1’;
wait for 25 ns;
Address <= "111";
wait for 25 ns;
RD <= ’0’;
wait for 70 ns;
status := data;
RD <= ’1’;

wait for 25 ns;
playout := TO_BITVECTOR(playdata);

for j in 0 to 15 loop
sdout <= playout(0);
wait for 1 ns;
playout := playout srl 1;

end loop;
end loop;

incdatasectoraddr := incdatasectoraddr + "0000000000000001";
if incdatasectoraddr >= "0000000001000000" then

if incdataheadaddr < "0010" then
incdataheadaddr := incdataheadaddr + "0001";

incdatasectoraddr := "0000000000000000";
else
incdatacylinderaddr := incdatacylinderaddr + "0000000000000001";
incdataheadaddr := "0000";
incdatasectoraddr := "0000000000000000";

end if;
end if;

end loop;
incdatacylinderaddr := datacylinderaddr;
incdataheadaddr := dataheadaddr;
incdatasectoraddr := datasectoraddr;

----------------------------------------------------------------------------
--------------Finding the next tempfatentry from the FATtable --------------
----------------------------------------------------------------------------
tempfatvar := bits_to_int(tempfatentry);
tempfatentry := FAT_mem(tempfatvar);
exit when tempfatentry = "0000000011111111";

end loop;
end process;
end behavior;

93


	University of South Florida
	Scholar Commons
	3-29-2004

	High Level VHDL Modeling of a Low-Power ASIC for a Tour Guide
	Umadevi Kailasam
	Scholar Commons Citation


	umathesis.dvi

